Phase imaging by spatial wavefront sampling

Phase imaging techniques extract the optical path-length information of a scene, whereas wavefront sensors provide the shape of an optical wavefront. Since these two applications have different technical requirements, they have developed their own specific technology. Here we show how to perform phase imaging combining wavefront sampling using a reconfigurable spatial light modulator with a beam position detector. The result is a time-multiplexed detection scheme, capable of being shortened considerably by compressive sensing. This robust reference-less method does not require the phase unwrapping algorithms demanded by conventional interferometry, and its lenslet-free nature removes tradeoffs usually found in Shack-Hartmann sensors.

[1]  Pablo Artal,et al.  Optics of the eye and its impact in vision: a tutorial , 2014 .

[2]  E. Tajahuerce,et al.  High-resolution adaptive imaging with a single photodiode , 2015, Scientific Reports.

[3]  Michel Verhaegen,et al.  Optical path difference microscopy with a Shack-Hartmann wavefront sensor. , 2017, Optics letters.

[4]  J. Chanteloup Multiple-wave lateral shearing interferometry for wave-front sensing. , 2005, Applied optics.

[5]  Gerard Rousset,et al.  Comparison of centroid computation algorithms in a Shack–Hartmann sensor , 2006 .

[6]  D. Gabor Microscopy by reconstructed wave-fronts , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  Robert W. Boyd,et al.  Imaging with a small number of photons , 2014, Nature Communications.

[8]  Thomas Godin,et al.  Reconstruction-free sensitive wavefront sensor based on continuous position sensitive detectors. , 2013, Applied optics.

[9]  W. Southwell Wave-front estimation from wave-front slope measurements , 1980 .

[10]  Ichirou Yamaguchi,et al.  Phase-shifting digital holography , 1997 .

[11]  Wolfgang Drexler,et al.  Subaperture correlation based digital adaptive optics for full field optical coherence tomography. , 2013, Optics express.

[12]  R Navarro,et al.  Laser ray-tracing method for optical testing. , 1999, Optics letters.

[13]  Joseph Izatt,et al.  Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging. , 2013, Biomedical optics express.

[14]  Tim N. Ford,et al.  Quantitative phase imaging using a partitioned detection aperture. , 2012, Optics letters.

[15]  Na Ji Adaptive optical fluorescence microscopy , 2017, Nature Methods.

[16]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[17]  E Tajahuerce,et al.  Compressive imaging in scattering media. , 2015, Optics express.

[18]  Keith A. Nugent,et al.  Coherent lensless X-ray imaging , 2010 .

[19]  Enrique Tajahuerce,et al.  Single pixel camera ophthalmoscope , 2016 .

[20]  Guillermo J. Tearney,et al.  Wavefront image sensor chip , 2010, Optics express.

[21]  J. Rogers,et al.  Spatial light interference microscopy (SLIM) , 2010, IEEE Photonic Society 24th Annual Meeting.

[22]  H. Andrews,et al.  Hadamard transform image coding , 1969 .

[23]  N. Streibl Phase imaging by the transport equation of intensity , 1984 .

[24]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[25]  Takanori Nomura,et al.  Holographic Shack–Hartmann wavefront sensor based on the correlation peak displacement detection method for wavefront sensing with large dynamic range , 2015 .

[26]  Qian Chen,et al.  Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation. , 2016, Optics express.

[27]  Randy A Bartels,et al.  Superresolved multiphoton microscopy with spatial frequency-modulated imaging , 2015, Proceedings of the National Academy of Sciences.

[28]  Jun Tanida,et al.  Single-shot phase imaging with randomized light (SPIRaL). , 2016, Optics express.

[29]  E. Tajahuerce,et al.  Single-pixel digital holography with phase-encoded illumination. , 2017, Optics express.

[30]  Peter R. Griffiths,et al.  Interferometers vs Monochromators: Separating the Optical and Digital Advantages , 1977 .

[31]  G. Pedrini,et al.  Phase retrieval using spatially modulated illumination. , 2014, Optics letters.

[32]  J. Gonglewski,et al.  Atmospheric structure function measurements with a Shack-Hartmann wave-front sensor. , 1992, Optics letters.

[33]  L. Tian,et al.  3D intensity and phase imaging from light field measurements in an LED array microscope , 2015 .

[34]  Vicente Durán,et al.  Image transmission through dynamic scattering media by single-pixel photodetection. , 2014, Optics express.

[35]  G. Nehmetallah,et al.  Applications of digital and analog holography in three-dimensional imaging , 2012 .

[36]  Dennis W Prather,et al.  Experimental demonstration of an optical-sectioning compressive sensing microscope (CSM). , 2010, Optics express.

[37]  Vicente Durán,et al.  Compressive holography with a single-pixel detector. , 2013, Optics letters.

[38]  M. Ducros,et al.  Encoded multisite two-photon microscopy , 2013, Proceedings of the National Academy of Sciences.

[39]  Gabriel Popescu,et al.  The power of imaging with phase, not power , 2017 .

[40]  D. Milkie,et al.  Rapid Adaptive Optical Recovery of Optimal Resolution over LargeVolumes , 2014, Nature Methods.

[41]  Bing Xu,et al.  Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering. , 2015, Optics express.

[42]  Manish Saxena,et al.  Structured illumination microscopy , 2015 .

[43]  J. Tanida,et al.  Single-shot phase imaging with a coded aperture. , 2014, Optics letters.

[44]  Vicente Durán,et al.  Reconfigurable Shack-Hartmann sensor without moving elements. , 2010, Optics letters.

[45]  Junzhong Liang,et al.  Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[46]  Changhuei Yang,et al.  Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast. , 2016, Optics express.

[47]  R. Horstmeyer,et al.  Wide-field, high-resolution Fourier ptychographic microscopy , 2013, Nature Photonics.

[48]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[49]  R. Shack,et al.  History and principles of Shack-Hartmann wavefront sensing. , 2001, Journal of refractive surgery.

[50]  Kevin J. Mitchell,et al.  Single-pixel infrared and visible microscope , 2014 .

[51]  Hans J. Tiziani,et al.  The adaptive Shack-Hartmann sensor , 2003 .

[52]  J. Řeháček,et al.  Wavefront sensing reveals optical coherence , 2014, Nature Communications.

[53]  E. Candès,et al.  Compressive fluorescence microscopy for biological and hyperspectral imaging , 2012, Proceedings of the National Academy of Sciences.

[54]  J P Huignard,et al.  Liquid-crystal Hartmann wave-front scanner. , 2000, Applied optics.

[55]  David R. Smith,et al.  Terahertz compressive imaging with metamaterial spatial light modulators , 2014, Nature Photonics.

[56]  Michel Verhaegen,et al.  Lensless coherent imaging by sampling of the optical field with digital micromirror device , 2015 .

[57]  P. Clemente,et al.  Computational imaging with a balanced detector , 2016, Scientific Reports.

[58]  J. Schwider,et al.  Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm. , 1998, Optics letters.

[59]  Enrique Tajahuerce,et al.  Single-pixel polarimetric imaging spectrometer by compressive sensing , 2013 .

[60]  Fernando Vargas-Martin,et al.  Quantitative phase microscopy of transparent samples using a liquid crystal display , 2013, Journal of biomedical optics.

[61]  D. Conkey,et al.  High-speed scattering medium characterization with application to focusing light through turbid media. , 2012, Optics express.

[62]  Kannan Ramchandran,et al.  Multiplexed coded illumination for Fourier Ptychography with an LED array microscope. , 2014, Biomedical optics express.

[63]  G. Pedrini,et al.  Phase retrieval with resolution enhancement by using structured illumination. , 2013, Optics letters.

[64]  Michel Verhaegen,et al.  Holographic imaging with a Shack-Hartmann wavefront sensor. , 2016, Optics express.

[65]  Martin J. Booth,et al.  Adaptive optical microscopy: the ongoing quest for a perfect image , 2014, Light: Science & Applications.

[66]  Ryszard Stepien,et al.  High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses. , 2017, Optics express.

[67]  Richard W. Wilson,et al.  SLODAR: measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor , 2002 .

[68]  J. Izatt,et al.  Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging. , 2014, Optics letters.

[69]  J. Romberg,et al.  Imaging via Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[70]  F. Zernike How I discovered phase contrast. , 1955, Science.

[71]  G. Pedrini,et al.  Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation , 2007 .

[72]  I. Iglesias Pyramid phase microscopy. , 2011, Optics letters.