Neural representation for object recognition in inferotemporal cortex

[1]  Rosemary A. Cowell,et al.  Distributed category‐specific recognition‐memory signals in human perirhinal cortex , 2016, Hippocampus.

[2]  Edmund T. Rolls,et al.  Invariant visual object recognition: biologically plausible approaches , 2015, Biological Cybernetics.

[3]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[4]  Rufin Vogels,et al.  Tolerance of Macaque Middle STS Body Patch Neurons to Shape-preserving Stimulus Transformations , 2015, Journal of Cognitive Neuroscience.

[5]  Bevil R. Conway,et al.  Functional Architecture for Disparity in Macaque Inferior Temporal Cortex and Its Relationship to the Architecture for Faces, Color, Scenes, and Visual Field , 2015, The Journal of Neuroscience.

[6]  Peter Janssen,et al.  Shape representations in the primate dorsal visual stream , 2015, Front. Comput. Neurosci..

[7]  Keiji Tanaka,et al.  Time Context of Cue-Outcome Associations Represented by Neurons in Perirhinal Cortex , 2015, The Journal of Neuroscience.

[8]  Peter Janssen,et al.  Effective Connectivity of Depth-Structure–Selective Patches in the Lateral Bank of the Macaque Intraparietal Sulcus , 2015, PLoS biology.

[9]  D. Burr,et al.  Buildup of spatial information over time and across eye-movements , 2014, Behavioural Brain Research.

[10]  Fei-Fei Li,et al.  Deep visual-semantic alignments for generating image descriptions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  David J. Freedman,et al.  Task Dependence of Visual and Category Representations in Prefrontal and Inferior Temporal Cortices , 2014, The Journal of Neuroscience.

[12]  Umut Güçlü,et al.  Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream , 2014, The Journal of Neuroscience.

[13]  Nikolaus Kriegeskorte,et al.  Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation , 2014, PLoS Comput. Biol..

[14]  Alex Clarke,et al.  Dynamic information processing states revealed through neurocognitive models of object semantics , 2014, Language, cognition and neuroscience.

[15]  Sidney R. Lehky,et al.  Dimensionality of Object Representations in Monkey Inferotemporal Cortex , 2014, Neural Computation.

[16]  L. Tyler,et al.  Predicting the Time Course of Individual Objects with MEG , 2014, Cerebral cortex.

[17]  Naokazu Goda,et al.  Perceptual Gloss Parameters Are Encoded by Population Responses in the Monkey Inferior Temporal Cortex , 2014, The Journal of Neuroscience.

[18]  Joseph R. Madsen,et al.  Spatiotemporal Dynamics Underlying Object Completion in Human Ventral Visual Cortex , 2014, Neuron.

[19]  Carolyn Jeane Perry,et al.  Feature integration and object representations along the dorsal stream visual hierarchy , 2014, Front. Comput. Neurosci..

[20]  Ivo D. Popivanov,et al.  Probabilistic and Single-Subject Retinotopic Maps Reveal the Topographic Organization of Face Patches in the Macaque Cortex , 2014, The Journal of Neuroscience.

[21]  Yuji Naya,et al.  The perirhinal cortex. , 2014, Annual review of neuroscience.

[22]  Yasushi Miyashita,et al.  Distinct Neuronal Interactions in Anterior Inferotemporal Areas of Macaque Monkeys during Retrieval of Object Association Memory , 2014, The Journal of Neuroscience.

[23]  David J. Jilk,et al.  Early recurrent feedback facilitates visual object recognition under challenging conditions , 2014, Front. Psychol..

[24]  Etienne Koechlin,et al.  Foundations of human reasoning in the prefrontal cortex , 2014, Science.

[25]  Daniel L. K. Yamins,et al.  Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition , 2014, PLoS Comput. Biol..

[26]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[27]  L. Tyler,et al.  Object-Specific Semantic Coding in Human Perirhinal Cortex , 2014, The Journal of Neuroscience.

[28]  Sidney R. Lehky,et al.  Recovering stimulus locations using populations of eye-position modulated neurons in dorsal and ventral visual streams of non-human primates , 2014, Front. Integr. Neurosci..

[29]  Jessica A. Collins,et al.  Knowledge is power: How conceptual knowledge transforms visual cognition , 2014, Psychonomic Bulletin & Review.

[30]  Ivo D. Popivanov,et al.  Heterogeneous Single-Unit Selectivity in an fMRI-Defined Body-Selective Patch , 2014, The Journal of Neuroscience.

[31]  Bevil R. Conway,et al.  Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex , 2013, Nature Neuroscience.

[32]  Go Uchida,et al.  Object Representation in Inferior Temporal Cortex Is Organized Hierarchically in a Mosaic-Like Structure , 2013, The Journal of Neuroscience.

[33]  Tobi Delbruck,et al.  Real-time classification and sensor fusion with a spiking deep belief network , 2013, Front. Neurosci..

[34]  Paul Wright,et al.  Objects and Categories: Feature Statistics and Object Processing in the Ventral Stream , 2013, Journal of Cognitive Neuroscience.

[35]  Sidney R. Lehky,et al.  Population Coding and the Labeling Problem: Extrinsic Versus Intrinsic Representations , 2013, Neural Computation.

[36]  Xueqi Cheng,et al.  A Network for Scene Processing in the Macaque Temporal Lobe , 2013, Neuron.

[37]  Carlo Baldassi,et al.  Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons , 2013, PLoS Comput. Biol..

[38]  C. Gilbert,et al.  Top-down influences on visual processing , 2013, Nature Reviews Neuroscience.

[39]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[40]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[41]  Lorraine K. Tyler,et al.  Medial perirhinal cortex disambiguates confusable objects , 2012, Brain : a journal of neurology.

[42]  Gouki Okazawa,et al.  Selective responses to specular surfaces in the macaque visual cortex revealed by fMRI , 2012, NeuroImage.

[43]  S. Dura-Bernal,et al.  Top-Down Feedback in an HMAX-Like Cortical Model of Object Perception Based on Hierarchical Bayesian Networks and Belief Propagation , 2012, PloS one.

[44]  Tim Curran,et al.  The Limits of Feedforward Vision: Recurrent Processing Promotes Robust Object Recognition when Objects Are Degraded , 2012, Journal of Cognitive Neuroscience.

[45]  Barbara L. Finlay,et al.  Systematic, balancing gradients in neuron density and number across the primate isocortex , 2012, Front. Neuroanat..

[46]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  T. Albright On the Perception of Probable Things: Neural Substrates of Associative Memory, Imagery, and Perception , 2012, Neuron.

[48]  Seyed-Mahdi Khaligh-Razavi,et al.  How Can Selection of Biologically Inspired Features Improve the Performance of a Robust Object Recognition Model? , 2012, PloS one.

[49]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  D. Pandya,et al.  The cortical connectivity of the prefrontal cortex in the monkey brain , 2012, Cortex.

[51]  David L. Sheinberg,et al.  The Effects of Prefrontal Cortex Inactivation on Object Responses of Single Neurons in the Inferotemporal Cortex during Visual Search , 2011, The Journal of Neuroscience.

[52]  Richard N. A. Henson,et al.  Perception and Conception: Temporal Lobe Activity during Complex Discriminations of Familiar and Novel Faces and Objects , 2011, Journal of Cognitive Neuroscience.

[53]  Honglak Lee,et al.  Unsupervised learning of hierarchical representations with convolutional deep belief networks , 2011, Commun. ACM.

[54]  David J. Jilk,et al.  Recurrent Processing during Object Recognition , 2011, Front. Psychol..

[55]  Keiji Tanaka,et al.  Statistics of visual responses in primate inferotemporal cortex to object stimuli. , 2011, Journal of neurophysiology.

[56]  Alex Clarke,et al.  The Evolution of Meaning: Spatio-temporal Dynamics of Visual Object Recognition , 2011, Journal of Cognitive Neuroscience.

[57]  C. Connor,et al.  Neural representations for object perception: structure, category, and adaptive coding. , 2011, Annual review of neuroscience.

[58]  S. R. Lehky Unmixing Binocular Signals , 2011, Front. Hum. Neurosci..

[59]  Thomas Serre,et al.  Object decoding with attention in inferior temporal cortex , 2011, Proceedings of the National Academy of Sciences.

[60]  Sidney R. Lehky,et al.  Frontiers in Computational Neuroscience Computational Neuroscience , 2022 .

[61]  Geoffrey E. Hinton,et al.  Learning to combine foveal glimpses with a third-order Boltzmann machine , 2010, NIPS.

[62]  Rosemary A. Cowell,et al.  Functional Dissociations within the Ventral Object Processing Pathway: Cognitive Modules or a Hierarchical Continuum? , 2010, Journal of Cognitive Neuroscience.

[63]  Nicole C. Rust,et al.  Selectivity and Tolerance (“Invariance”) Both Increase as Visual Information Propagates from Cortical Area V4 to IT , 2010, The Journal of Neuroscience.

[64]  Yann LeCun,et al.  Convolutional networks and applications in vision , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[65]  David L. Sheinberg,et al.  Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search , 2010, Proceedings of the National Academy of Sciences.

[66]  B. Richmond,et al.  Monkeys Quickly Learn and Generalize Visual Categories without Lateral Prefrontal Cortex , 2010, Neuron.

[67]  N. Sigala,et al.  Is Top-Down Control from Prefrontal Cortex Necessary for Visual Categorization? , 2010, Neuron.

[68]  Andy C. H. Lee,et al.  Going beyond LTM in the MTL: A synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception , 2010, Neuropsychologia.

[69]  C. Baker,et al.  The neural basis of visual object learning , 2010, Trends in Cognitive Sciences.

[70]  Minami Ito,et al.  Distribution of colour‐selective activity in the monkey inferior temporal cortex revealed by functional magnetic resonance imaging , 2009, European Journal of Neuroscience.

[71]  Ilya E. Monosov,et al.  Frontal eye field activity enhances object identification during covert visual search. , 2009, Journal of neurophysiology.

[72]  Koorosh Mirpour,et al.  State-dependent effects of stimulus presentation duration on the temporal dynamics of neural responses in the inferotemporal cortex of macaque monkeys. , 2009, Journal of neurophysiology.

[73]  Manabu Tanifuji,et al.  Cortical Connections to Area TE in Monkey: Hybrid Modular and Distributed Organization , 2009, Cerebral cortex.

[74]  Keiji Tanaka,et al.  Conflict-induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex , 2009, Nature Reviews Neuroscience.

[75]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[76]  M. Tanifuji,et al.  Cortical Columnar Organization Is Reconsidered in Inferior Temporal Cortex , 2008, Cerebral cortex.

[77]  Julien Vitay,et al.  Sustained Activities and Retrieval in a Computational Model of the Perirhinal Cortex , 2008, Journal of Cognitive Neuroscience.

[78]  Sidney R. Lehky,et al.  Spatial Modulation of Primate Inferotemporal Responses by Eye Position , 2008, PloS one.

[79]  Eric T. Carlson,et al.  A neural code for three-dimensional object shape in macaque inferotemporal cortex , 2008, Nature Neuroscience.

[80]  David J. Freedman,et al.  Dynamic population coding of category information in inferior temporal and prefrontal cortex. , 2008, Journal of neurophysiology.

[81]  Margaret E. Sereno,et al.  Shape selectivity in primate frontal eye field. , 2008, Journal of neurophysiology.

[82]  A. Treves,et al.  Converging Neuronal Activity in Inferior Temporal Cortex during the Classification of Morphed Stimuli , 2008, Cerebral cortex.

[83]  C. Stern,et al.  Where vision meets memory: prefrontal-posterior networks for visual object constancy during categorization and recognition. , 2008, Cerebral cortex.

[84]  Yasushi Miyashita,et al.  Towards understanding of the cortical network underlying associative memory , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[85]  David Badre,et al.  Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes , 2008, Trends in Cognitive Sciences.

[86]  Dwight J. Kravitz,et al.  How position dependent is visual object recognition? , 2008, Trends in Cognitive Sciences.

[87]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[88]  M. Verleysen,et al.  Nonlinear Dimensionality Reduction , 2007 .

[89]  A. Torralba,et al.  The role of context in object recognition , 2007, Trends in Cognitive Sciences.

[90]  H. Eichenbaum,et al.  The medial temporal lobe and recognition memory. , 2007, Annual review of neuroscience.

[91]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[92]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[93]  S. R. Lehky,et al.  Enhancement of object representations in primate perirhinal cortex during a visual working-memory task. , 2007, Journal of neurophysiology.

[94]  Stephen M. Kosslyn,et al.  Neuroimaging evidence for object model verification theory: Role of prefrontal control in visual object categorization , 2007, NeuroImage.

[95]  Manabu Tanifuji,et al.  Representation of the spatial relationship among object parts by neurons in macaque inferotemporal cortex. , 2006, Journal of neurophysiology.

[96]  Keiji Tanaka,et al.  Reward Association Affects Neuronal Responses to Visual Stimuli in Macaque TE and Perirhinal Cortices , 2006, The Journal of Neuroscience.

[97]  L. Tyler,et al.  Binding crossmodal object features in perirhinal cortex. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[98]  David Gaffan,et al.  Perirhinal cortical contributions to object perception , 2006, Trends in Cognitive Sciences.

[99]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[100]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[101]  Shimon Edelman,et al.  The interaction of shape- and location-based priming in object categorisation: Evidence for a hybrid “what+where” representation stage , 2005, Vision Research.

[102]  Lisa M Saksida,et al.  The Perceptual-Mnemonic/Feature Conjunction Model of Perirhinal Cortex Function , 2005, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[103]  M. Buckley The Role of the Perirhinal Cortex and Hippocampus in Learning, Memory, and Perception , 2005, The Quarterly journal of experimental psychology. B, Comparative and physiological psychology.

[104]  F. Hamker The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. , 2005, Cerebral cortex.

[105]  Paul M. B. Vitányi,et al.  Shannon Information and Kolmogorov Complexity , 2004, ArXiv.

[106]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[107]  D. Chklovskii,et al.  Maps in the brain: what can we learn from them? , 2004, Annual review of neuroscience.

[108]  Edward M. Callaway,et al.  Feedforward, feedback and inhibitory connections in primate visual cortex , 2004, Neural Networks.

[109]  Keiji Tanaka,et al.  The role of the medial prefrontal cortex in achieving goals , 2004, Current Opinion in Neurobiology.

[110]  Rainer Goebel,et al.  Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network , 2003, NeuroImage.

[111]  J. Maunsell,et al.  Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. , 2003, Journal of neurophysiology.

[112]  David J. Freedman,et al.  Neural correlates of categories and concepts , 2003, Current Opinion in Neurobiology.

[113]  Yasushi Miyashita,et al.  Forward Processing of Long-Term Associative Memory in Monkey Inferotemporal Cortex , 2003, The Journal of Neuroscience.

[114]  Yasushi Miyashita,et al.  Anatomical organization of forward fiber projections from area TE to perirhinal neurons representing visual long-term memory in monkeys , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[116]  David J. Freedman,et al.  Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. , 2002, Journal of neurophysiology.

[117]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Projections to the neocortex , 2002, The Journal of comparative neurology.

[118]  Nikos K. Logothetis,et al.  Three-Dimensional Shape Representation in Monkey Cortex , 2002, Neuron.

[119]  E. Rolls,et al.  Selective Perceptual Impairments After Perirhinal Cortex Ablation , 2001, The Journal of Neuroscience.

[120]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[121]  Y. Yamane,et al.  Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns , 2001, Nature Neuroscience.

[122]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[123]  B. Richmond,et al.  Learning motivational significance of visual cues for reward schedules requires rhinal cortex , 2000, Nature Neuroscience.

[124]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[125]  R. Vogels,et al.  Spatial sensitivity of macaque inferior temporal neurons , 2000, The Journal of comparative neurology.

[126]  E. Miller,et al.  Task-specific neural activity in the primate prefrontal cortex. , 2000, Journal of neurophysiology.

[127]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[128]  B. Richmond,et al.  Response differences in monkey TE and perirhinal cortex: stimulus association related to reward schedules. , 2000, Journal of neurophysiology.

[129]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[130]  Seth J. Ramus,et al.  Dissociation between the effects of damage to perirhinal cortex and area TE. , 1999, Learning & memory.

[131]  T. Bussey,et al.  Perceptual–mnemonic functions of the perirhinal cortex , 1999, Trends in Cognitive Sciences.

[132]  R. Vogels Categorization of complex visual images by rhesus monkeys. Part 2: single‐cell study , 1999, The European journal of neuroscience.

[133]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[134]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[135]  Shimon Edelman Representation is representation of similarities , 1998, Behavioral and Brain Sciences.

[136]  Keiji Tanaka,et al.  Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. , 1998, Journal of neurophysiology.

[137]  D. Gaffan,et al.  Perirhinal cortex ablation impairs configural learning and paired–associate learning equally , 1998, Neuropsychologia.

[138]  D. Gaffan,et al.  Perirhinal Cortex Ablation Impairs Visual Object Identification , 1998, The Journal of Neuroscience.

[139]  D. Gaffan,et al.  Learning and transfer of object-reward associations and the role of the perirhinal cortex. , 1998, Behavioral neuroscience.

[140]  D. Gaffan,et al.  Impairment of visual object-discrimination learning after perirhinal cortex ablation. , 1997, Behavioral neuroscience.

[141]  David L. Sheinberg,et al.  The role of temporal cortical areas in perceptual organization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[142]  E. Murray,et al.  Functional double dissociation between two inferior temporal cortical areas: perirhinal cortex versus middle temporal gyrus. , 1997, Journal of neurophysiology.

[143]  K. Tanaka,et al.  Divergent Projections from the Anterior Inferotemporal Area TE to the Perirhinal and Entorhinal Cortices in the Macaque Monkey , 1996, The Journal of Neuroscience.

[144]  Keiji Tanaka,et al.  Optical Imaging of Functional Organization in the Monkey Inferotemporal Cortex , 1996, Science.

[145]  Y. Miyashita,et al.  Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[146]  Demetri Terzopoulos,et al.  Animat vision: Active vision in artificial animals , 1995, Proceedings of IEEE International Conference on Computer Vision.

[147]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents , 1994, The Journal of comparative neurology.

[148]  M. Ito,et al.  Processing of contrast polarity of visual images in inferotemporal cortex of the macaque monkey. , 1994, Cerebral cortex.

[149]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[150]  William D. Ross,et al.  A neural theory of attentive visual search: interactions of boundary, surface, spatial, and object representations. , 1994, Psychological review.

[151]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[152]  M. Mishkin,et al.  Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[153]  K Tanaka,et al.  Neuronal mechanisms of object recognition. , 1993, Science.

[154]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[155]  Keiji Tanaka,et al.  Coding visual images of objects in the inferotemporal cortex of the macaque monkey. , 1991, Journal of neurophysiology.

[156]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TE and TEO with medial temporal- lobe structures in infant and adult monkeys , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[157]  Dana H. Ballard,et al.  Animate Vision , 1991, Artif. Intell..

[158]  D. Amaral,et al.  Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[159]  E Harth,et al.  The inversion of sensory processing by feedback pathways: a model of visual cognitive functions. , 1987, Science.

[160]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[161]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[162]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[163]  Ivo D. Dinov,et al.  Deep learning for neural networks , 2018 .

[164]  C. Ranganath,et al.  Cortico-hippocampal systems involved in memory and cognition: the PMAT framework. , 2015, Progress in brain research.

[165]  Doris Y. Tsao,et al.  The Macaque Face Patch System: A Window into Object Representation. , 2014, Cold Spring Harbor symposia on quantitative biology.

[166]  Alan Yuille,et al.  Active Vision , 2014, Computer Vision, A Reference Guide.

[167]  Stephen Grossberg,et al.  Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world , 2013, Neural Networks.

[168]  S. R. Lehky,et al.  Comparison of shape encoding in primate dorsal and ventral visual pathways. , 2007, Journal of neurophysiology.

[169]  Thomas Serre,et al.  A quantitative theory of immediate visual recognition. , 2007, Progress in brain research.

[170]  Manabu Tanifuji,et al.  Representation of object images by combinations of visual features in the macaque inferior temporal cortex. , 2006, Novartis Foundation symposium.

[171]  Leslie G. Ungerleider,et al.  Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys , 2004, Experimental Brain Research.

[172]  D. Mumford,et al.  On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[173]  Nathan Intrator,et al.  Towards structural systematicity in distributed, statically bound visual representations , 2003, Cogn. Sci..

[174]  Keiji Tanaka Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. , 2003, Cerebral cortex.

[175]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[176]  J. Bullier,et al.  The role of feedback connections in shaping the responses of visual cortical neurons. , 2001, Progress in brain research.

[177]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[178]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[179]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[180]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[181]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[182]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[183]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[184]  Kunihiko Fukushima,et al.  Neocognitron: A hierarchical neural network capable of visual pattern recognition , 1988, Neural Networks.

[185]  David D. Cox,et al.  Untangling invariant object recognition , 2007, Trends in Cognitive Sciences.

[186]  Sidney R. Lehky,et al.  Frontiers in Computational Neuroscience Computational Neuroscience , 2022 .