Spatial polarization instabilities due to transverse effects in nonlinear guided-wave systems

The elliptically polarized nonlinear beam propagation in a two-dimensional optical guided-wave system that contains isotropic Kerr media is solved numerically by using the finite-element method. Computed results for the nonlinear substrate exhibit novel transverse effects, such as spatial modulational instabilities for solitons emitted from the film. Since soliton emission can be interpreted in terms of self-induced Cerenkov radiation, these instabilities can be classified as Cerenkov instabilities. The sensitivity of the beam propagation to the initial state of polarization suggests the possibility of constructing new photonic devices.

[1]  G. Stegeman,et al.  Numerical study of soliton emission from a nonlinear waveguide , 1987 .

[2]  Stegeman,et al.  Multisoliton emission from a nonlinear waveguide. , 1986, Physical review. A, General physics.

[3]  S Wabnitz,et al.  New all-optical devices based on third-order nonlinearity of birefringent fibers. , 1986, Optics letters.

[4]  R. Enns,et al.  Bistable solitons and optical switching , 1987 .

[5]  A. Vatarescu,et al.  Intensity discrimination through nonlinear power coupling in birefringent fibers , 1986 .

[6]  Kennedy,et al.  Quantum propagation: Squeezing via modulational polarization instabilities in a birefringent nonlinear medium. , 1988, Physical review. A, General physics.

[7]  M. Koshiba,et al.  Analysis of soliton pulse propagation in an optical fiber using the finite‐element method , 1990 .

[8]  Herbert G. Winful,et al.  Self‐induced polarization changes in birefringent optical fibers , 1985 .

[9]  A. Kaplan,et al.  Dispersion-related multimode instabilities and self-sustained oscillations in nonlinear counterpropagating waves. , 1989, Optics letters.

[10]  S. Wabnitz,et al.  Ultrashort pulse train generation through induced modulational polarization instability in a birefringent Kerr-like medium , 1989 .

[11]  Paul Lagasse,et al.  Application of propagating beam methods to electromagnetic and acoustic wave propagation problems: A review , 1987 .

[12]  K. Ikeda,et al.  Optical Turbulence: Chaotic Behavior of Transmitted Light from a Ring Cavity , 1980 .

[13]  George I. Stegeman,et al.  Experimental observation of polarization instability in a birefringent optical fiber , 1986 .

[14]  Masanori Koshiba,et al.  Split-step finite-element method applied to nonlinear integrated optics , 1990 .

[15]  C. Wächter,et al.  Evolution of nonlinear guided optical fields down a dielectric film with a nonlinear cladding , 1988 .

[16]  G. Stegeman,et al.  Nonlinear propagation and self-switching of ultrashort optical pulses in fiber nonlinear directional couplers: the normal dispersion regime , 1989 .

[17]  Masanori Koshiba,et al.  Numerical simulation of guided-wave SHG light sources utilising Cerenkov radiation scheme , 1989 .

[18]  Yaron Silberberg,et al.  Instabilities, Self-Oscillation, and Chaos in a Simple Nonlinear Optical Interaction , 1982 .

[19]  Masanori Koshiba,et al.  Finite-element formalism for nonlinear slab-guided waves , 1988 .

[20]  R. W. Terhune,et al.  Intensity-Dependent Changes in the Refractive Index of Liquids , 1964 .

[21]  A. Kaplan Multistable self-trapping of light and multistable soliton pulse propagation , 1985 .

[22]  C. Paré,et al.  Transverse modulational instabilities for counterpropagating beams in Kerr media. , 1988, Optics letters.

[23]  K. Ikeda,et al.  Instability Leading to Periodic and Chaotic Self-Pulsations in a Bistable Optical Cavity , 1982 .

[24]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[25]  Boyd,et al.  Instabilities and chaos in the polarizations of counterpropagating light fields. , 1987, Physical review letters.

[26]  George I. Stegeman,et al.  Waveguides and Fibers for Nonlinear Optics , 1989, Nonlinear Optical Properties of Materials.

[27]  Sipe,et al.  Nonlinear polarization dynamics. I. The single-pulse equations. , 1987, Physical review. A, General physics.

[28]  Wabnitz,et al.  Spatial chaos in the polarization for a birefringent optical fiber with periodic coupling. , 1987, Physical review letters.

[29]  Y. Silberberg,et al.  Optical instabilities in a nonlinear Kerr medium , 1984 .

[30]  C. Flytzanis Instabilities and Chaos in Nonlinear Optical Beam Interactions , 1986 .

[31]  N J Doran,et al.  Polarization instabilities for solitons in birefringent fibers. , 1987, Optics letters.

[32]  Otsuka,et al.  Frustrated optical instability: Self-induced periodic and chaotic spatial distribution of polarization in nonlinear optical media. , 1985, Physical review letters.

[33]  R. W. Terhune,et al.  Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength , 1965 .

[34]  M. Koshiba,et al.  Self-focusing instability and chaotic behavior of nonlinear optical waves guided by dielectric slab structures. , 1988, Optics Letters.

[35]  George I. Stegeman,et al.  Third order nonlinear integrated optics , 1988 .

[36]  E. Caglioti,et al.  Stochastic polarization instability: limitation to optical switching using fibers with modulated birefringence. , 1987, Optics letters.

[37]  K. A. Shore,et al.  Static and dynamic bifurcations in semiconductor lasers for device applications , 1987 .

[38]  G. S. Cooper,et al.  Power-dependent polarization of optical pulses , 1988 .

[39]  H. Winful,et al.  Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices. , 1986, Optics letters.

[40]  A. Kaplan,et al.  Isolas in four-wave mixing optical bistability , 1985 .

[41]  M. Koshiba,et al.  Nonlinear beam propagation in tapered waveguides , 1989 .

[42]  Photonic switching devices , 1989 .

[43]  M. Belić,et al.  Calculation of transverse effects in optical bistability using fast Fourier transform techniques , 1982 .

[44]  A. Mecozzi,et al.  All-optical switching and intensity discrimination by polarization instability in periodically twisted fiber filters. , 1987, Optics letters.