Uniqueness and stability for inverse source problem for fractional diffusion-wave equations

This paper is devoted to the inverse problem of determining the spatially dependent source in a time fractional diffusion-wave equation, with the aid of extra measurement data at subboundary. Uniqueness result is obtained by using the analyticity and the new established unique continuation principle provided that the coefficients are all temporally independent. We also derive a Lipschitz stability of our inverse source problem under a suitable topology whose norm is given via the adjoint system of the fractional diffusion-wave equation.

[1]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[2]  Yuri Luchko,et al.  Subordination principles for the multi-dimensional space-time-fractional diffusion-wave equation , 2018, Theory of Probability and Mathematical Statistics.

[3]  Ralf Metzler,et al.  Fractional Calculus: An Introduction for Physicists , 2012 .

[4]  T. Wei,et al.  Identify the fractional order and diffusion coefficient in a fractional diffusion wave equation , 2021, J. Comput. Appl. Math..

[5]  Rodrigo Ponce Subordination principle for fractional diffusion-wave equations of Sobolev type , 2020 .

[6]  O. Agrawal Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .

[7]  T. Wei,et al.  Determine a Space-Dependent Source Term in a Time Fractional Diffusion-Wave Equation , 2020, Acta Applicandae Mathematicae.

[8]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[9]  Identifying unknown source in degenerate parabolic equation from final observation , 2020 .

[10]  Masahiro Yamamoto,et al.  Time-fractional diffusion equation in the fractional Sobolev spaces , 2015 .

[11]  J. Kemppainen Solvability of a Dirichlet problem for a time fractional diffusion-wave equation in Lipschitz domains , 2012 .

[12]  William Rundell,et al.  A tutorial on inverse problems for anomalous diffusion processes , 2015, 1501.00251.

[13]  Masahiro Yamamoto,et al.  Inverse problems of determining coefficients of the fractional partial differential equations , 2019, Fractional Differential Equations.

[14]  T. Wei,et al.  Determination of the initial data in a time-fractional diffusion-wave problem by a final time data , 2019, Comput. Math. Appl..

[15]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[16]  R. Gorenflo,et al.  Wright functions as scale-invariant solutions of the diffusion-wave equation , 2000 .

[17]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[18]  T. Wei,et al.  Identifying a fractional order and a space source term in a time-fractional diffusion-wave equation simultaneously , 2019, Inverse Problems.

[19]  Fawang Liu,et al.  Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain , 2012, Comput. Math. Appl..

[20]  Ying Zhang,et al.  Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate , 2012 .

[21]  Masahiro Yamamoto,et al.  Inverse moving source problem for time-fractional evolution equations: determination of profiles , 2021, Inverse Problems.

[22]  Yuriy Povstenko,et al.  Neumann boundary-value problems for a time-fractional diffusion-wave equation in a half-plane , 2012, Comput. Math. Appl..

[23]  Yun Zhang,et al.  The backward problem for a time-fractional diffusion-wave equation in a bounded domain , 2018, Comput. Math. Appl..

[24]  Daijun Jiang,et al.  Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations , 2016, 1607.05917.

[25]  Ying Zhang,et al.  Inverse source problem for a fractional diffusion equation , 2011 .

[26]  Masahiro Yamamoto,et al.  Backward problems in time for fractional diffusion-wave equation , 2020, Inverse Problems.

[27]  Masahiro Yamamoto,et al.  Initial-boundary value problems for multi-term time-fractional diffusion equations with \begin{document}$ x $\end{document}-dependent coefficients , 2018, Evolution Equations & Control Theory.

[28]  Masahiro Yamamoto,et al.  Inverse Moving Source Problem for Fractional Diffusion(-Wave) Equations: Determination of Orbits , 2018, Springer Proceedings in Mathematics & Statistics.

[29]  Yuriy Povstenko,et al.  SIGNALING PROBLEM FOR TIME-FRACTIONAL DIFFUSION-WAVE EQUATION IN A HALF-PLANE , 2008 .

[30]  M. Yamamoto,et al.  Stability analysis for determining a source term in a 1-D advection-dispersion equation , 2006 .

[31]  S. Wearne,et al.  Fractional cable models for spiny neuronal dendrites. , 2008, Physical review letters.

[32]  Antonio Visioli,et al.  Introduction to Fractional Calculus , 2015 .

[33]  Anatoly N. Kochubei,et al.  Asymptotic properties of solutions of the fractional diffusion-wave equation , 2014, 1404.7612.

[34]  Xiaona Yang,et al.  Strong positivity property and a related inverse source problem for multi-term time-fractional diffusion equations , 2021, 2104.08434.

[35]  Y. Povstenko Linear Fractional Diffusion-Wave Equation for Scientists and Engineers , 2015 .

[36]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[37]  Masahiro Yamamoto,et al.  Inverse problems of determining parameters of the fractional partial differential equations , 2019, Fractional Differential Equations.

[38]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[39]  Masahiro Yamamoto,et al.  Inverse problems of determining sources of the fractional partial differential equations , 2019, Fractional Differential Equations.

[40]  Masahiro Yamamoto,et al.  Approximate controllability for fractional diffusion equations by interior control , 2014 .