An oncogenic Ezh2 mutation cooperates with particular genetic alterations to induce tumors in mice and redistributes H3K27 trimethylation throughout the genome

[1]  Xin Liu,et al.  Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2 , 2015, Science.

[2]  S. Armstrong,et al.  Loss of BAP1 function leads to EZH2-dependent transformation , 2015, Nature Medicine.

[3]  Benjamin G. Bitler,et al.  Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers , 2015, Nature Medicine.

[4]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[5]  David B. Darr,et al.  Mutation-specific RAS oncogenicity explains NRAS codon 61 selection in melanoma. , 2014, Cancer discovery.

[6]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[7]  O. Elemento,et al.  EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. , 2013, Cancer cell.

[8]  Tim J. Wigle,et al.  Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2 , 2013, Proceedings of the National Academy of Sciences.

[9]  K. Hahn,et al.  An orally bioavailable chemical probe of the Lysine Methyltransferases EZH2 and EZH1. , 2013, ACS chemical biology.

[10]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[11]  Kai Fu,et al.  Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. , 2012, Cancer cell.

[12]  Yan Liu,et al.  EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations , 2012, Nature.

[13]  A. Sivachenko,et al.  A Landscape of Driver Mutations in Melanoma , 2012, Cell.

[14]  Matthew J. Davis,et al.  Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma , 2012, Nature Genetics.

[15]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[16]  Eric S. Lander,et al.  Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing , 2012, Proceedings of the National Academy of Sciences.

[17]  Yong Jiang,et al.  Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27) , 2012, Proceedings of the National Academy of Sciences.

[18]  Steven J. M. Jones,et al.  Frequent mutation of histone modifying genes in non-Hodgkin lymphoma , 2011, Nature.

[19]  Matthew D. Young,et al.  ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity , 2011, Nucleic acids research.

[20]  Sandya Liyanarachchi,et al.  Molecular and Cellular Pathobiology Epigenetic Silencing Mediated through Activated PI 3 K / AKT Signaling in Breast Cancer , 2011 .

[21]  Ryan D. Morin,et al.  Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. , 2011, Blood.

[22]  Raul Rabadan,et al.  Inactivating mutations of acetyltransferase genes in B-cell lymphoma , 2010, Nature.

[23]  R. Copeland,et al.  Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas , 2010, Proceedings of the National Academy of Sciences.

[24]  G. Rozenberg,et al.  Somatic p16INK4a loss accelerates melanomagenesis , 2010, Oncogene.

[25]  R. Kuiper,et al.  Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes , 2010, Nature Genetics.

[26]  A. Tarakhovsky,et al.  Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus. , 2009, Genes & development.

[27]  J. Pollack,et al.  MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. , 2008, Blood.

[28]  Jeffrey T. Chang,et al.  Utilization of pathway signatures to reveal distinct types of B lymphoma in the Emicro-myc model and human diffuse large B-cell lymphoma. , 2008, Cancer research.

[29]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[30]  D. Gold,et al.  Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation , 2008, Nature Genetics.

[31]  S. Janz,et al.  A transgenic mouse model of plasma cell malignancy shows phenotypic, cytogenetic, and gene expression heterogeneity similar to human multiple myeloma. , 2007, Cancer research.

[32]  Kristian Helin,et al.  The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. , 2007, Genes & development.

[33]  M. Serrano,et al.  A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. , 2007, Genes & development.

[34]  J. Zeitlinger,et al.  Polycomb complexes repress developmental regulators in murine embryonic stem cells , 2006, Nature.

[35]  Kristian Helin,et al.  Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. , 2006, Genes & development.

[36]  L. Chin,et al.  Characterization of melanocyte‐specific inducible Cre recombinase transgenic mice , 2006, Genesis.

[37]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[38]  L. Bystrykh,et al.  The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. , 2006, Blood.

[39]  J. Shay,et al.  BRAFE600-associated senescence-like cell cycle arrest of human naevi , 2005, Nature.

[40]  B. Chait,et al.  Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement , 2003, Nature Immunology.

[41]  R. Willemze,et al.  The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma , 2001, British journal of haematology.

[42]  B. Kempkes,et al.  Cell cycle activation by c‐myc in a Burkitt lymphoma model cell line , 2000, International journal of cancer.

[43]  C. Meijer,et al.  Coexpression of BMI-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin's disease. , 2000, The American journal of pathology.

[44]  U. Thorsteinsdóttir,et al.  Functional antagonism of the Polycomb-Group genes eed and Bmi1 in hemopoietic cell proliferation. , 1999, Genes & development.

[45]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[46]  K. Rajewsky,et al.  B lymphocyte-specific, Cre-mediated mutagenesis in mice. , 1997, Nucleic acids research.

[47]  M. Sofroniew,et al.  Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. , 1994, Genes & development.

[48]  L. Pasqualucci,et al.  AID is required for germinal center–derived lymphomagenesis , 2008, Nature Genetics.

[49]  Y. Kotake,et al.  pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. , 2007, Genes & development.