Dark Energy Constraints from the CTIO Lensing Survey

We perform a cosmological parameter analysis of the 75 deg2 CTIO lensing survey in conjunction with cosmic microwave background (CMB) and Type Ia supernovae data. For ΛCDM cosmologies, we find that the amplitude of the power spectrum at low redshift is given by σ8 = 0.81 (95% confidence level), where the error bound includes both statistical and systematic errors. The total of all systematic errors is smaller than the statistical errors, but they do make up a significant fraction of the error budget. We find that weak lensing improves the constraints on dark energy as well. The (constant) dark energy equation of state parameter, w, is measured to be -0.89 (95% c.l.). Marginalizing over a constant w slightly changes the estimate of σ8 to 0.79 (95% c.l.). We also investigate variable w cosmologies but find that the constraints weaken considerably; next-generation surveys are needed to obtain meaningful constraints on the possible time evolution of dark energy.

[1]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[2]  Patrick Shopbell,et al.  Caltech Faint Galaxy Redshift Survey. X. A Redshift Survey in the Region of the Hubble Deep Field North , 2000 .

[3]  J. Weller,et al.  Large‐scale cosmic microwave background anisotropies and dark energy , 2003, astro-ph/0307104.

[4]  C. Keeton,et al.  Three-dimensional mapping of dark matter , 2002, astro-ph/0205412.

[5]  G. Bernstein,et al.  Weak-Lensing Results from the 75 Square Degree Cerro Tololo Inter-American Observatory Survey , 2003 .

[6]  J. Weller,et al.  Future supernovae observations as a probe of dark energy , 2001, astro-ph/0106079.

[7]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[8]  Halo Properties in Models with Dynamical Dark Energy , 2003, astro-ph/0303304.

[9]  Jeremiah P. Ostriker,et al.  Precision Cosmology? Not Just Yet . . . , 2003, Science.

[10]  S. Dye,et al.  The shear power spectrum from the COMBO-17 survey , 2003 .

[11]  Masahiro Takada,et al.  Cosmological parameters from lensing power spectrum and bispectrum tomography , 2003, astro-ph/0310125.

[12]  G. M. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001 .

[13]  S. J. Dodds,et al.  Non-linear evolution of cosmological power spectra , 1996 .

[14]  Y. Mellier,et al.  Gravity and Nongravity Modes in the VIRMOS-DESCART Weak-Lensing Survey , 2001, astro-ph/0109182.

[15]  Peter Schneider,et al.  A NEW MEASURE FOR COSMIC SHEAR , 1998 .

[16]  Cambridge,et al.  Detection of weak gravitational lensing by large-scale structure , 2000 .

[17]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[18]  David M. Wittman,et al.  Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales , 2000, Nature.

[19]  Weak Lensing Measurements: A Revisited Method and Application toHubble Space Telescope Images , 1999, astro-ph/9905090.

[20]  Dealing with systematics in cosmic shear studies: New results from the VIRMOS-Descart survey , 2004, astro-ph/0406468.

[21]  Weak Lensing Results from the 75 Square Degree CTIO Survey , 2002, astro-ph/0210604.

[22]  Constraints on the redshift dependence of the dark energy potential , 2004, astro-ph/0412269.

[23]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[24]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[25]  Cosmic Shear Statistics in the Suprime-Cam 2.1 Square Degree Field: Constraints on Ωm and σ8* , 2002, astro-ph/0210450.

[26]  G. Bernstein,et al.  The skewness of the aperture mass statistic , 2003 .

[27]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[28]  Uros Seljak,et al.  Shear calibration biases in weak-lensing surveys , 2003, astro-ph/0301054.

[29]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[30]  Edinburgh,et al.  Joint cosmic shear measurements with the Keck and William Herschel Telescopes , 2002, astro-ph/0203134.

[31]  P. Schneider,et al.  B-modes in cosmic shear from source redshift clustering , 2002 .

[32]  S. J. Lilly,et al.  The Canada-France Redshift Survey. I. Introduction to the Survey, Photometric Catalogs, and Surface Brightness Selection Effects , 1995 .

[33]  T. Theuns,et al.  Discriminating Weak Lensing from Intrinsic Spin Correlations Using the Curl-Gradient Decomposition , 2000, astro-ph/0012336.

[34]  Wayne Hu,et al.  � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. POWER SPECTRUM TOMOGRAPHY WITH WEAK LENSING , 1999 .

[35]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[36]  Yannick Mellier,et al.  Detection of Dark Matter Skewness in the VIRMOS-DESCART Survey: Implications for Ω0 , 2003 .

[37]  Wayne Hu,et al.  Joint galaxy - lensing observables and the dark energy , 2004 .

[38]  Michael S. Turner,et al.  PROBING DARK ENERGY: METHODS AND STRATEGIES , 2000, astro-ph/0012510.

[39]  New dark energy constraints from supernovae, microwave background, and galaxy clustering. , 2004, Physical review letters.

[40]  Steven W. Allen,et al.  Constraining dark energy with X‐ray galaxy clusters, supernovae and the cosmic microwave background , 2004, astro-ph/0409574.

[41]  H. Rix,et al.  Cosmological weak lensing with the HST GEMS survey , 2004, astro-ph/0411324.

[42]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003 .

[43]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[44]  The case for dynamical dark energy revisited , 2004, astro-ph/0403687.

[45]  Asantha Cooray,et al.  Uncorrelated estimates of dark energy evolution , 2005 .

[46]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[47]  S. Bridle,et al.  Revealing the Nature of Dark Energy Using Bayesian Evidence , 2003, astro-ph/0305526.

[48]  Constraints on Omega_m and sigma_8 from weak lensing in RCS fields , 2002, astro-ph/0204295.

[49]  Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy , 2004, astro-ph/0407372.

[50]  A. Klypin,et al.  Modeling Dynamical Dark Energy , 2003, astro-ph/0303303.

[51]  H. Hoekstra,et al.  Constraints on Ωm and σ8 from Weak Lensing in Red-Sequence Cluster Survey Fields , 2002 .