On computational tools for Bayesian data analysis
暂无分享,去创建一个
[1] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[2] R. Tweedie,et al. Rates of convergence of the Hastings and Metropolis algorithms , 1996 .
[3] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[4] G. Roberts,et al. Bayesian inference for non‐Gaussian Ornstein–Uhlenbeck stochastic volatility processes , 2004 .
[5] Christian P. Robert,et al. Introducing Monte Carlo Methods with R , 2009 .
[6] Jim Albert,et al. Bayesian Computation with R , 2008 .
[7] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[8] Xiao-Li Meng,et al. SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .
[9] James C. Spall,et al. Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.
[10] Tobias Rydén,et al. Hidden Markov Models , 2006 .
[11] C. Robert,et al. Importance sampling methods for Bayesian discrimination between embedded models , 2009, 0910.2325.
[12] R. Douc,et al. Minimum variance importance sampling via Population Monte Carlo , 2007 .
[13] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[14] C. Robert,et al. Computational methods for Bayesian model choice , 2009, 0907.5123.
[15] S. Chib,et al. Bayesian analysis of binary and polychotomous response data , 1993 .
[16] A. Owen,et al. Safe and Effective Importance Sampling , 2000 .
[17] D. Balding,et al. Approximate Bayesian computation in population genetics. , 2002, Genetics.
[18] Jean-Marie Cornuet,et al. Adaptive Multiple Importance Sampling , 2009, 0907.1254.
[19] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[20] Heikki Haario,et al. Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..
[21] Simon J. Godsill,et al. Marginal maximum a posteriori estimation using Markov chain Monte Carlo , 2002, Stat. Comput..
[22] J. Rosenthal,et al. Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.
[23] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[24] Paul Marjoram,et al. Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[25] P. Fearnhead,et al. Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .
[26] C. Robert,et al. Optimal Sample Size for Multiple Testing : the Case of Gene Expression Mi roarraysPeter , 2004 .
[27] Christopher Holmes,et al. Bayesian Methods for Nonlinear Classification and Regressing , 2002 .
[28] P. McCullagh,et al. Generalized Linear Models , 1992 .
[29] W. Michael Conklin,et al. Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.
[30] N. Metropolis. THE BEGINNING of the MONTE CARLO METHOD , 2022 .
[31] Eric Moulines,et al. Stability of Stochastic Approximation under Verifiable Conditions , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[32] R. Douc,et al. Convergence of Adaptive Sampling Schemes , 2007, 0708.0711.
[33] Xiao-Li Meng,et al. Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .
[34] A. Graja. Bayesian Analysis of Stochastic Volatility Models , 2009 .
[35] Christian P. Robert,et al. Bayesian computational methods , 2010, 1002.2702.
[36] Refik Soyer,et al. Bayesian Methods for Nonlinear Classification and Regression , 2004, Technometrics.
[37] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[38] J. Bernardo,et al. Simulation-Based Optimal Design , 1999 .
[39] Colin Rose. Computational Statistics , 2011, International Encyclopedia of Statistical Science.
[40] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[41] A. Gelfand,et al. Bayesian Model Choice: Asymptotics and Exact Calculations , 1994 .
[42] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[43] Gersende Fort,et al. Estimation of cosmological parameters using adaptive importance sampling , 2009, 0903.0837.
[44] Jean-Michel Marin,et al. Convergence of Adaptive Sampling Schemes , 2004 .
[45] J. Marin,et al. Population Monte Carlo , 2004 .
[46] N. Shephard,et al. Markov chain Monte Carlo methods for stochastic volatility models , 2002 .
[47] S. Eddy. Hidden Markov models. , 1996, Current opinion in structural biology.
[48] Michael I. Jordan,et al. Bayesian parameter estimation via variational methods , 2000, Stat. Comput..
[49] D. Rubin. Using the SIR algorithm to simulate posterior distributions , 1988 .
[50] S. Chib. Marginal Likelihood from the Gibbs Output , 1995 .
[51] Jean-Michel Marin,et al. Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..
[52] Yukito Iba,et al. Population-based Monte Carlo algorithms , 2000 .
[53] Gareth O. Roberts,et al. Examples of Adaptive MCMC , 2009 .