Plasma etching for fabrication of complex nanophotonic lasers from bonded InP semiconductor layers

[1]  M. Barahona,et al.  Sensitivity and spectral control of network lasers , 2022, Nature Communications.

[2]  K. Moselund,et al.  Single-Mode Emission in InP Microdisks on Si Using Au Antenna , 2021, ACS photonics.

[3]  Logan G. Wright,et al.  Deep physical neural networks trained with backpropagation , 2021, Nature.

[4]  K. Moselund,et al.  Heterogeneous Integration of III–V Materials by Direct Wafer Bonding for High-Performance Electronics and Optoelectronics , 2021, IEEE Transactions on Electron Devices.

[5]  K. Moselund,et al.  Scaling of metal-clad InP nanodisk lasers: optical performance and thermal effects. , 2020, Optics express.

[6]  K. Moselund,et al.  Wurtzite InP microdisks: from epitaxy to room-temperature lasing , 2020, Nanotechnology.

[7]  J. Bowers,et al.  Ring-Resonator Based Widely-Tunable Narrow-Linewidth Si/InP Integrated Lasers , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  K. Moselund,et al.  InP-on-Si Optically Pumped Microdisk Lasers via Monolithic Growth and Wafer Bonding , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  J. Bertolotti,et al.  A nanophotonic laser on a graph , 2017, Nature Communications.

[10]  Akshay Balgarkashi,et al.  Telecom-Wavelength Bottom-up Nanobeam Lasers on Silicon-on-Insulator. , 2017, Nano letters.

[11]  I. Sagnes,et al.  Hybrid indium phosphide-on-silicon nanolaser diode , 2017, Nature Photonics.

[12]  Thomas N. Theis,et al.  The End of Moore's Law: A New Beginning for Information Technology , 2017, Computing in Science & Engineering.

[13]  Thomas Ferrotti,et al.  Co-integrated 1.3µm hybrid III-V/silicon tunable laser and silicon Mach-Zehnder modulator operating at 25Gb/s. , 2016, Optics express.

[14]  Geert Morthier,et al.  InP Microdisk Lasers Integrated on Si for Optical Interconnects , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Anders S. G. Andrae,et al.  On Global Electricity Usage of Communication Technology: Trends to 2030 , 2015 .

[16]  G. Strasser,et al.  Reversing the pump dependence of a laser at an exceptional point , 2014, Nature Communications.

[17]  S. Matsuo,et al.  Current-injection photonic-crystal laser , 2012 .

[18]  Brian Corbett,et al.  Inductively coupled plasma deep etching of InP/InGaAsP in Cl2/CH4/H2 based chemistries with the electrode at 20 °C , 2012 .

[19]  Serge Massar,et al.  All-optical Reservoir Computing , 2012, Optics express.

[20]  E. Namdas,et al.  How to recognize lasing , 2009 .

[21]  Diederik S. Wiersma,et al.  The physics and applications of random lasers , 2008 .

[22]  Lee Chee-Wei,et al.  Room-Temperature Inductively Coupled Plasma Etching of InP Using Cl 2 N 2 and Cl 2 /CH 4 /H 2 , 2006 .

[23]  Tao Mei,et al.  Study and optimization of room temperature inductively coupled plasma etching of InP using Cl2/CH4/H2 and CH4/H2 , 2006 .

[24]  N. Kernevez,et al.  InP dies transferred onto silicon substrate for optical interconnects application , 2006 .

[25]  Fow-Sen Choa,et al.  Smooth and vertical-sidewall InP etching using Cl2/N2 inductively coupled plasma , 2004 .

[26]  Sun Changzheng,et al.  Vertical and smooth, etching of InP by Cl2/CH4/Ar inductively coupled plasma at room temperature , 2003 .

[27]  M. Yamada,et al.  Influence of instantaneous mode competition on the dynamics of semiconductor lasers , 2002 .

[28]  H. Ruda,et al.  Inductively coupled plasma etching of InP using N2/H2 , 2001 .

[29]  P. Tessier,et al.  Plasma etching : principles, mechanisms, application to micro- and nano-technologies , 2000 .

[30]  J. Merz,et al.  Fabrication of high-aspect-ratio InP-based vertical-cavity laser mirrors using CH4/H2/O2/Ar reactive ion etching , 1997 .

[31]  D. Thourhout,et al.  Nano-ridge laser monolithically grown on (001) Si , 2019, Future Directions in Silicon Photonics.