Parameters identification of chaotic system by chaotic gravitational search algorithm

In this paper, for the parameter identification problem of chaotic system, a chaotic gravitational search algorithm (CGSA) is proposed. At first, an iterative chaotic map with infinite collapses is introduced and chaotic local search (CLS) is designed, then CLS and basic gravitational search are combined in the procedure frame. The CGSA is composed of coarse gravitational search and fine chaotic local search, while chaotic search seeks the optimal solution further, based on the current best solution found by the coarse gravitational search. In order to show the effectiveness of CGSA, both offline and online parameter identifications of Lorenz system are conducted in comparative experiments, while the performances of CGSA are compared with GA, PSO and GSA. The results demonstrate the effectiveness and efficiency of CGSA in solving the problem of parameter identification of chaotic system, and the improvement to GSA has been verified.

[1]  Daolin Xu,et al.  An approach of parameter estimation for non-synchronous systems , 2005 .

[2]  B. Alatas,et al.  Chaos embedded particle swarm optimization algorithms , 2009 .

[3]  Hui Qin,et al.  Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling , 2009 .

[4]  Yinggan Tang,et al.  Parameter estimation of chaotic system with time-delay: A differential evolution approach , 2009 .

[5]  Wei-Der Chang,et al.  Parameter identification of Chen and Lü systems: A differential evolution approach , 2007 .

[6]  Hossein Nezamabadi-pour,et al.  Disruption: A new operator in gravitational search algorithm , 2011, Sci. Iran..

[7]  Rong Zhang,et al.  Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems , 2007 .

[8]  Ling Wang,et al.  Parameter estimation for chaotic systems by particle swarm optimization , 2007 .

[9]  Bilal Alatas,et al.  Chaotic bee colony algorithms for global numerical optimization , 2010, Expert Syst. Appl..

[10]  W. Chang Parameter identification of Rossler’s chaotic system by an evolutionary algorithm , 2006 .

[11]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[12]  Jun-Juh Yan,et al.  Parameter identification of chaotic systems using evolutionary programming approach , 2008, Expert Syst. Appl..

[13]  Hamidreza Modares,et al.  Parameter identification of chaotic dynamic systems through an improved particle swarm optimization , 2010, Expert Syst. Appl..

[14]  Xiaogang Wu,et al.  Parameter estimation only from the symbolic sequences generated by chaos system , 2004 .

[15]  Ye Xu,et al.  Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm , 2011, Expert Syst. Appl..

[16]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[17]  Bo Peng,et al.  Differential evolution algorithm-based parameter estimation for chaotic systems , 2009 .

[18]  P. Woafo,et al.  Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification , 2005 .

[19]  Chang-song Zhou,et al.  Chaotic annealing for optimization , 1997 .

[20]  Santo Banerjee,et al.  Chaos, signal communication and parameter estimation , 2004 .

[21]  Qiaoyan Wen,et al.  Hybrid chaotic ant swarm optimization , 2009 .

[22]  Xiangdong Wang,et al.  Parameters identification of chaotic systems via chaotic ant swarm , 2006 .

[23]  Di He,et al.  A chaotic map with infinite collapses , 2000, 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119).

[24]  Huanwen Tang,et al.  Application of chaos in simulated annealing , 2004 .

[25]  Di He,et al.  Chaotic characteristics of a one-dimensional iterative map with infinite collapses , 2001 .

[26]  G. Álvarez,et al.  Breaking parameter modulated chaotic secure communication system , 2003, nlin/0311041.

[27]  Li Shaoqian,et al.  Chaotic spreading sequences with multiple access performance better than random sequences , 2000 .

[28]  Jianzhong Zhou,et al.  Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm , 2011 .

[29]  India,et al.  Use of synchronization and adaptive control in parameter estimation from a time series , 1998, chao-dyn/9804005.