Parameters identification of chaotic system by chaotic gravitational search algorithm
暂无分享,去创建一个
Han Xiao | Jian Xiao | Jianzhong Zhou | Chaoshun Li | Jian-zhong Zhou | Han Xiao | Chaoshun Li | Jian Xiao
[1] Daolin Xu,et al. An approach of parameter estimation for non-synchronous systems , 2005 .
[2] B. Alatas,et al. Chaos embedded particle swarm optimization algorithms , 2009 .
[3] Hui Qin,et al. Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling , 2009 .
[4] Yinggan Tang,et al. Parameter estimation of chaotic system with time-delay: A differential evolution approach , 2009 .
[5] Wei-Der Chang,et al. Parameter identification of Chen and Lü systems: A differential evolution approach , 2007 .
[6] Hossein Nezamabadi-pour,et al. Disruption: A new operator in gravitational search algorithm , 2011, Sci. Iran..
[7] Rong Zhang,et al. Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems , 2007 .
[8] Ling Wang,et al. Parameter estimation for chaotic systems by particle swarm optimization , 2007 .
[9] Bilal Alatas,et al. Chaotic bee colony algorithms for global numerical optimization , 2010, Expert Syst. Appl..
[10] W. Chang. Parameter identification of Rossler’s chaotic system by an evolutionary algorithm , 2006 .
[11] Bo Liu,et al. Improved particle swarm optimization combined with chaos , 2005 .
[12] Jun-Juh Yan,et al. Parameter identification of chaotic systems using evolutionary programming approach , 2008, Expert Syst. Appl..
[13] Hamidreza Modares,et al. Parameter identification of chaotic dynamic systems through an improved particle swarm optimization , 2010, Expert Syst. Appl..
[14] Xiaogang Wu,et al. Parameter estimation only from the symbolic sequences generated by chaos system , 2004 .
[15] Ye Xu,et al. Parameter identification of chaotic systems by hybrid Nelder-Mead simplex search and differential evolution algorithm , 2011, Expert Syst. Appl..
[16] Hossein Nezamabadi-pour,et al. GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..
[17] Bo Peng,et al. Differential evolution algorithm-based parameter estimation for chaotic systems , 2009 .
[18] P. Woafo,et al. Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification , 2005 .
[19] Chang-song Zhou,et al. Chaotic annealing for optimization , 1997 .
[20] Santo Banerjee,et al. Chaos, signal communication and parameter estimation , 2004 .
[21] Qiaoyan Wen,et al. Hybrid chaotic ant swarm optimization , 2009 .
[22] Xiangdong Wang,et al. Parameters identification of chaotic systems via chaotic ant swarm , 2006 .
[23] Di He,et al. A chaotic map with infinite collapses , 2000, 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119).
[24] Huanwen Tang,et al. Application of chaos in simulated annealing , 2004 .
[25] Di He,et al. Chaotic characteristics of a one-dimensional iterative map with infinite collapses , 2001 .
[26] G. Álvarez,et al. Breaking parameter modulated chaotic secure communication system , 2003, nlin/0311041.
[27] Li Shaoqian,et al. Chaotic spreading sequences with multiple access performance better than random sequences , 2000 .
[28] Jianzhong Zhou,et al. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm , 2011 .
[29] India,et al. Use of synchronization and adaptive control in parameter estimation from a time series , 1998, chao-dyn/9804005.