Microfluidic sorting in an optical lattice

The response of a microscopic dielectric object to an applied light field can profoundly affect its kinetic motion. A classic example of this is an optical trap, which can hold a particle in a tightly focused light beam. Optical fields can also be used to arrange, guide or deflect particles in appropriate light-field geometries. Here we demonstrate an optical sorter for microscopic particles that exploits the interaction of particles—biological or otherwise—with an extended, interlinked, dynamically reconfigurable, three-dimensional optical lattice. The strength of this interaction with the lattice sites depends on the optical polarizability of the particles, giving tunable selection criteria. We demonstrate both sorting by size (of protein microcapsule drug delivery agents) and sorting by refractive index (of other colloidal particle streams). The sorting efficiency of this method approaches 100%, with values of 96% or more observed even for concentrated solutions with throughputs exceeding those reported for fluorescence-activated cell sorting. This powerful, non-invasive technique is suited to sorting and fractionation within integrated (‘lab-on-a-chip’) microfluidic systems, and can be applied in colloidal, molecular and biological research.

[1]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[2]  J. Golovchenko,et al.  Optical Matter: Crystallization and Binding in Intense Optical Fields , 1990, Science.

[3]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[4]  D. Jewitt,et al.  Discovery of the candidate Kuiper belt object 1992 QB1 , 1993, Nature.

[5]  Renu Malhotra,et al.  The origin of Pluto's orbit: implications for the , 1994, astro-ph/9504036.

[6]  今坂藤太,et al.  光色谱法(Optical Chromatography) , 1995 .

[7]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[8]  W. Ip,et al.  Orbital expansion and resonant trapping during the late accretion stages of the outer planets , 1996 .

[9]  A. Koliadima,et al.  New methodologies of field-flow fractionation for the separation and characterization of dilute colloidal samples , 1996 .

[10]  J. Colwell,et al.  Accretion in the Edgeworth-Kuiper Belt: Forming 100-1000 KM Radius Bodies at 30 AU and Beyond. , 1997 .

[11]  Deniz Ertas Lateral Separation of Macromolecules and Polyelectrolytes in Microlithographic Arrays , 1998 .

[12]  J. Luu,et al.  Accretion in the Early Kuiper Belt. I. Coagulation and Velocity Evolution , 1998, astro-ph/9804185.

[13]  Robert H. Austin,et al.  Microfabricated sieve for the continuous sorting of macromolecules , 1998 .

[14]  Harold F. Levison,et al.  A Multiple Time Step Symplectic Algorithm for Integrating Close Encounters , 1998 .

[15]  S. Quake,et al.  A microfabricated fluorescence-activated cell sorter , 1999, Nature Biotechnology.

[16]  Evidence for Early Stellar Encounters in the Orbital Distribution of Edgeworth-Kuiper Belt Objects , 1999 .

[17]  Orbital Evolution of Planets Embedded in a Planetesimal Disk , 1999, astro-ph/9902370.

[18]  M. Brown,et al.  The Inclination Distribution of the Kuiper Belt , 2001 .

[19]  H. Craighead,et al.  Separation of long DNA molecules in a microfabricated entropic trap array. , 2000, Science.

[20]  H. F. Levison,et al.  ON THE SIZE DEPENDENCE OF THE INCLINATION DISTRIBUTION OF THE MAIN KUIPER BELT , 2001 .

[21]  Alessandro Morbidelli,et al.  The Structure of the Kuiper Belt: Size Distribution and Radial Extent , 2001 .

[22]  Chadwick A. Trujillo,et al.  The Radial Distribution of the Kuiper Belt , 2001 .

[23]  Chadwick A. Trujillo,et al.  Properties of the Trans-Neptunian Belt: Statistics from the Canada-France-Hawaii Telescope Survey , 2001 .

[24]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[25]  Chia-Fu Chou,et al.  Electrodeless dielectrophoresis of single- and double-stranded DNA. , 2002, Biophysical journal.

[26]  Dmytro Nykypanchuk,et al.  Brownian Motion of DNA Confined Within a Two-Dimensional Array , 2002, Science.

[27]  Chadwick A. Trujillo,et al.  A Correlation between Inclination and Color in the Classical Kuiper Belt , 2002, astro-ph/0201040.

[28]  W Sibbett,et al.  Creation and Manipulation of Three-Dimensional Optically Trapped Structures , 2002, Science.

[29]  G. Bernstein,et al.  Observational Limits on a Distant Cold Kuiper Belt , 2002 .

[30]  P. T. Korda,et al.  Kinetically locked-in colloidal transport in an array of optical tweezers. , 2002, Physical review letters.

[31]  D. Hollenbach,et al.  Dispersal of Disks Around Young Stars: Constraints on Kuiper Belt Formation , 2002 .

[32]  David G. Grier,et al.  Evolution of a colloidal critical state in an optical pinning potential landscape , 2002 .

[33]  Michael P. MacDonald,et al.  Optical Tweezers: the next generation , 2002 .

[34]  A. Mayes,et al.  Low-temperature processing of ‘baroplastics’ by pressure-induced flow , 2003, Nature.

[35]  Kishan Dholakia,et al.  Brownian particle in an optical potential of the washboard type. , 2003, Physical review letters.

[36]  P. Marmottant,et al.  Controlled vesicle deformation and lysis by single oscillating bubbles , 2003, Nature.

[37]  R. Gomes,et al.  The origin of the Kuiper Belt high-inclination population , 2003 .

[38]  Alessandro Morbidelli,et al.  The Kuiper Belt and the Primordial Evolution of the Solar System , 2004 .

[39]  Harold F. Levison,et al.  Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? , 2004 .