Fabrication, Structure and Properties of Epoxy/Metal Nanocomposites

Gd2O3 nanoparticles surface-modified with IPDI were compounded with epoxy. IPDI provided an anchor into the porous Gd2O3 surface and a bridge into the matrix, thus creating strong bonds between matrix and Gd2O3 . 1.7vol.-% Gd2O3 increased the Young’s modulus of epoxy by 16–19%; the surface-modified Gd2O3 nanoparticles improved the critical strain energy release rate by 64.3% as compared to 26.4% produced by the unmodified nanoparticles. The X-ray shielding efficiency of neat epoxy was enhanced by 300–360%, independent of the interface modification. Interface debonding consumes energy and leads to crack pinning and matrix shear banding; most fracture energy is consumed by matrix shear banding as shown by the large number of ridges on the fracture surface.

[1]  C. Orton,et al.  Practical Radiation Protection in Healthcare , 2003 .

[2]  Jin Ma,et al.  Effects of compatibilizing agent and in situ fibril on the morphology, interface and mechanical properties of EPDM/nylon copolymer blends , 2002 .

[3]  L. L. Pluart,et al.  Epoxy/montmorillonite nanocomposites : influence of organophilic treatment on reactivity, morphology and fracture properties , 2005 .

[4]  J. Baur,et al.  Highly dispersed nanosilica–epoxy resins with enhanced mechanical properties , 2008 .

[5]  Anthony J. Kinloch,et al.  Toughening mechanisms of nanoparticle-modified epoxy polymers , 2007 .

[6]  L. Rose Toughening due to crack-front interaction with a second-phase dispersion , 1987 .

[7]  S. D. Hudson,et al.  The influence of clay and elastomer concentration on the morphology and fracture energy of preformed acrylic rubber dispersed clay filled epoxy nanocomposites , 2005 .

[8]  Liqun Zhang,et al.  Reinforcement of Elastomer by Starch , 2006 .

[9]  Xusheng Du,et al.  Development of a novel toughener for epoxy resins , 2009 .

[10]  K. Friedrich,et al.  Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems , 2008 .

[11]  Hsu-Chiang Kuan,et al.  A reactive polymer for toughening epoxy resin , 2010 .

[12]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[13]  Benito Rodríguez-González,et al.  Optical Control and Patterning of Gold‐Nanorod–Poly(vinyl alcohol) Nanocomposite Films , 2005 .

[14]  Cheng‐Chien Wang,et al.  Preparation and Characterization of Layered Double Hydroxides – PMMA Nanocomposites by Solution Polymerization , 2005 .

[15]  Wei Chen,et al.  Enhanced thermal and mechanical properties of poly(methyl acrylate)/ZnAl layered double hydroxide nanocomposites formed by in situ polymerisation , 2005 .

[16]  Zuyao Chen,et al.  A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature , 1999 .

[17]  Anthony G. Evans,et al.  The strength of brittle materials containing second phase dispersions , 1972 .

[18]  L. Mascia,et al.  Epoxy-silica particulate nanocomposites: Chemical interactions, reinforcement and fracture toughness , 2005 .

[19]  Hongwei Song,et al.  Porous In2O3:RE (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb) Nanotubes: Electrospinning Preparation and Room Gas-Sensing Properties , 2010 .

[20]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[21]  Jannick Duchet-Rumeau,et al.  Evaluation of the structure and dispersion in polymer-layered silicate nanocomposites , 2005 .

[22]  Charles A. Wilkie,et al.  The thermal degradation of poly(methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes , 2006 .

[23]  M. Bernius,et al.  High-Dielectric-Constant Self-Assembled Nodular Structures in Polymer/Gold Nanoparticle Films , 2006 .

[24]  K. Friedrich,et al.  Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures , 2008 .

[25]  L. Luong,et al.  Interface-tuned epoxy/clay nanocomposites , 2011 .

[26]  E. Pirault,et al.  Mechanochemical synthesis of gadolinium oxide nanoparticles , 1999 .

[27]  A. Clearfield,et al.  Effect of nanoplatelet aspect ratio on mechanical properties of epoxy nanocomposites , 2007 .

[28]  R. K. Shah,et al.  Organoclay degradation in melt processed polyethylene nanocomposites , 2006 .

[29]  G. Camino,et al.  Effect of matrix features on polypropylene layered silicate nanocomposites , 2005 .

[30]  L. Luong,et al.  Structure-property relations of 55 nm particle-toughened epoxy , 2010 .

[31]  M. Ratner,et al.  Nanoparticle, Size, Shape, and Interfacial Effects on Leakage Current Density, Permittivity, and Breakdown Strength of Metal Oxide−Polyolefin Nanocomposites: Experiment and Theory , 2010 .

[32]  Thomas J. Pinnavaia,et al.  Polymer-layered silicate nanocomposites: an overview , 1999 .

[33]  Li Liu,et al.  In situ reaction and radiation protection properties of Gd(AA)3/NR composites , 2004 .

[34]  Anthony J. Kinloch,et al.  Micromechanisms of crack propagation in hybrid-particulate composites , 1985 .

[35]  Satoshi Kawata,et al.  Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix , 2003 .

[36]  Xusheng Du,et al.  Development of SENB toughness measurement for thermoset resins , 2007 .

[37]  K. S. Ravichandran,et al.  Elastic Properties of Two‐Phase Composites , 1994 .

[38]  M. Witcomb,et al.  Polymer stabilized silver nanoparticles: A photochemical synthesis route , 2004 .

[39]  R. Day,et al.  Surface modification and its effect on the interfacial properties of model aramid-fibre/epoxy composites , 2002 .

[40]  Yiu-Wing Mai,et al.  Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency , 2006 .

[41]  F. F. Lange,et al.  The interaction of a crack front with a second-phase dispersion , 1970 .

[42]  A. Clearfield,et al.  Fracture behavior of α-zirconium phosphate-based epoxy nanocomposites , 2004 .