From 2-D Images to 3-D Models

Any intelligent agent, be it robot or human, needs to continually update its knowledge about the surrounding environment, and images offer a rich source of relevant information. Unfortunately, however, in normal two-dimensional images the effects of viewing geometry, illumination, surface reflectance, and object shape are confounded together in a way that makes it very difficult to extract interesting information about the surrounding scene.

[1]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[2]  Alex Pentland,et al.  Perceptual Organization and the Representation of Natural Form , 1986, Artif. Intell..

[3]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[4]  A. Pentland Shape information from shading: A theory about human perception , 1989 .

[5]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[7]  J. Daugman Two-dimensional spectral analysis of cortical receptive field profiles , 1980, Vision Research.

[8]  H. D. Crane A theoretical analysis of the visual accommodation system in humans. NASA CR-606. , 1966, NASA contractor report. NASA CR. United States. National Aeronautics and Space Administration.

[9]  A. Pentland Finding the illuminant direction , 1982 .

[10]  Alex Pentland,et al.  A New Sense for Depth of Field , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[12]  Geoffrey E. Hinton,et al.  Parallel visual computation , 1983, Nature.

[13]  Alex Pentland,et al.  Shading into Texture , 1984, Artif. Intell..

[14]  Alex Pentland,et al.  Progress toward a simple, parallel vision machine , 1989 .

[15]  Andrew P. Witkin,et al.  Recovering Surface Shape and Orientation from Texture , 1981, Artif. Intell..

[16]  Alex Pentland,et al.  Part Segmentation for Object Recognition , 1989, Neural Computation.

[17]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[18]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.