Satb1 Regulates Contactin 5 to Pattern Dendrites of a Mammalian Retinal Ganglion Cell

The size and shape of dendritic arbors are prime determinants of neuronal connectivity and function. We asked how ON-OFF direction-selective ganglion cells (ooDSGCs) in mouse retina acquire their bistratified dendrites, in which responses to light onset and light offset are segregated to distinct strata. We found that the transcriptional regulator Satb1 is selectively expressed by ooDSGCs. In Satb1 mutant mice, ooDSGC dendrites lack ON arbors, and the cells selectively lose ON responses. Satb1 regulates expression of a homophilic adhesion molecule, Contactin 5 (Cntn5). Both Cntn5 and its co-receptor Caspr4 are expressed not only by ooDSGCs, but also by interneurons that form a scaffold on which ooDSGC ON dendrites fasciculate. Removing Cntn5 from either ooDSGCs or interneurons partially phenocopies Satb1 mutants, demonstrating that Satb1-dependent Cntn5 expression in ooDSGCs leads to branch-specific homophilic interactions with interneurons. Thus, Satb1 directs formation of a morphologically and functionally specialized compartment within a complex dendritic arbor.

[1]  J. N. Kay,et al.  MEGF10 AND 11 MEDIATE HOMOTYPIC INTERACTIONS REQUIRED FOR MOSAIC SPACING OF RETINAL NEURONS , 2012, Nature.

[2]  R. Masland,et al.  Neurite arborization and mosaic spacing in the mouse retina require DSCAM , 2008, Nature.

[3]  Peter G Fuerst,et al.  Adhesion molecules in establishing retinal circuitry , 2009, Current Opinion in Neurobiology.

[4]  J. Sanes,et al.  Molecular basis of sidekick-mediated cell-cell adhesion and specificity , 2016, eLife.

[5]  J. Sanes,et al.  Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus , 2011, The Journal of comparative neurology.

[6]  Marla B. Feller,et al.  Development of asymmetric inhibition underlying direction selectivity in the retina , 2011, Nature.

[7]  B. Cubelos,et al.  Cux1 and Cux2 Regulate Dendritic Branching, Spine Morphology, and Synapses of the Upper Layer Neurons of the Cortex , 2010, Neuron.

[8]  J. N. Kay,et al.  Development of dendritic form and function. , 2015, Annual review of cell and developmental biology.

[9]  Phong L. Nguyen,et al.  Cadherin-6 Mediates Axon-Target Matching in a Non-Image-Forming Visual Circuit , 2011, Neuron.

[10]  R H Masland,et al.  Receptive fields and dendritic structure of directionally selective retinal ganglion cells , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  F. Rieke,et al.  Characterization of Ca2+-binding protein 5 knockout mouse retina. , 2008, Investigative ophthalmology & visual science.

[12]  L. Menut,et al.  BTB/POZ-Zinc Finger Protein Abrupt Suppresses Dendritic Branching in a Neuronal Subtype-Specific and Dosage-Dependent Manner , 2004, Neuron.

[13]  N. Brecha,et al.  The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina , 2014, The Journal of comparative neurology.

[14]  B. Hogan,et al.  Retina‐ and ventral forebrain‐specific Cre recombinase activity in transgenic mice , 2000, Genesis.

[15]  B. Matthews,et al.  Molecules and mechanisms of dendrite development in Drosophila , 2009, Development.

[16]  H. Wässle,et al.  The structural correlate of the receptive field centre of alpha ganglion cells in the cat retina. , 1983, The Journal of physiology.

[17]  Michal Rivlin-Etzion,et al.  On and Off Retinal Circuit Assembly by Divergent Molecular Mechanisms , 2013, Science.

[18]  J. Sanes,et al.  Improved tools for the Brainbow toolbox. , 2013, Nature methods.

[19]  Xintong Dong,et al.  Intrinsic and extrinsic mechanisms of dendritic morphogenesis. , 2015, Annual review of physiology.

[20]  Richard H. Masland,et al.  Receptive Field Microstructure and Dendritic Geometry of Retinal Ganglion Cells , 2000, Neuron.

[21]  J. N. Kay,et al.  NEUROD6 EXPRESSION DEFINES NOVEL RETINAL AMACRINE CELL SUBTYPES AND REGULATES THEIR FATE , 2011, Nature Neuroscience.

[22]  Y. Jan,et al.  Different Levels of the Homeodomain Protein Cut Regulate Distinct Dendrite Branching Patterns of Drosophila Multidendritic Neurons , 2003, Cell.

[23]  Kyle Johnson,et al.  Parallel Mechanisms Encode Direction in the Retina , 2011, Neuron.

[24]  S. Galande,et al.  The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. , 2007, Current opinion in genetics & development.

[25]  G. Feng,et al.  Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition , 2003, Nature.

[26]  Bernardo Rudy,et al.  Satb1 Is an Activity-Modulated Transcription Factor Required for the Terminal Differentiation and Connectivity of Medial Ganglionic Eminence-Derived Cortical Interneurons , 2012, The Journal of Neuroscience.

[27]  M. Denaxa,et al.  Maturation-Promoting Activity of SATB1 in MGE-Derived Cortical Interneurons , 2012, Cell reports.

[28]  J. Sanes,et al.  Subtype-Specific Regeneration of Retinal Ganglion Cells following Axotomy: Effects of Osteopontin and mTOR Signaling , 2015, Neuron.

[29]  Max Costa,et al.  SATB1 and 2 in colorectal cancer. , 2015, Carcinogenesis.

[30]  M. Toyoshima,et al.  A cis-complex of NB-2/contactin-5 with amyloid precursor-like protein 1 is localized on the presynaptic membrane , 2012, Neuroscience Letters.

[31]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[32]  Kazutada Watanabe,et al.  Preferential localization of neural cell recognition molecule NB‐2 in developing glutamatergic neurons in the rat auditory brainstem , 2009, The Journal of comparative neurology.

[33]  Masahito Yamagata,et al.  Sidekicks Synaptic Adhesion Molecules that Promote Lamina-Specific Connectivity in the Retina , 2002, Cell.

[34]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[35]  Ramanathan Arvind,et al.  Knot/Collier and Cut Control Different Aspects of Dendrite Cytoskeleton and Synergize to Define Final Arbor Shape , 2007, Neuron.

[36]  J. Sanes,et al.  Laminar Restriction of Retinal Ganglion Cell Dendrites and Axons: Subtype-Specific Developmental Patterns Revealed with Transgenic Markers , 2010, The Journal of Neuroscience.

[37]  S. Bouyain,et al.  The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules , 2010, Proceedings of the National Academy of Sciences.

[38]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[39]  H. Niki,et al.  Aberrant responses to acoustic stimuli in mice deficient for neural recognition molecule NB‐2 , 2003, The European journal of neuroscience.

[40]  J. Sanes,et al.  Type II Cadherins Guide Assembly of a Direction-Selective Retinal Circuit , 2014, Cell.

[41]  L. Chalupa,et al.  Morphological properties of mouse retinal ganglion cells , 2006, Neuroscience.

[42]  M. Feller,et al.  Genetic Identification of an On-Off Direction- Selective Retinal Ganglion Cell Subtype Reveals a Layer-Specific Subcortical Map of Posterior Motion , 2009, Neuron.

[43]  T. Jessell,et al.  TAG-1 can mediate homophilic binding, but neurite outgrowth on TAG-1 requires an L1-like molecule and β1 integrins , 1994, Neuron.

[44]  Zhe Zhang,et al.  Wakefulness Is Governed by GABA and Histamine Cotransmission , 2015, Neuron.

[45]  J. Sanes,et al.  Expanding the Ig Superfamily Code for Laminar Specificity in Retina: Expression and Role of Contactins , 2012, The Journal of Neuroscience.

[46]  Benjamin E Reese,et al.  Sox2 Regulates Cholinergic Amacrine Cell Positioning and Dendritic Stratification in the Retina , 2014, The Journal of Neuroscience.

[47]  B. van der Zwaag,et al.  Contactins: structural aspects in relation to developmental functions in brain disease. , 2011, Advances in protein chemistry and structural biology.

[48]  Michael D. Kim,et al.  Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. , 2007, Annual review of neuroscience.

[49]  Elior Peles,et al.  The local differentiation of myelinated axons at nodes of Ranvier , 2003, Nature Reviews Neuroscience.

[50]  Y. Kanakura,et al.  Role of tissue-specific AT-rich DNA sequence-binding proteins in lymphocyte differentiation , 2014, International Journal of Hematology.

[51]  J. Girault,et al.  Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers , 2003, The Journal of cell biology.

[52]  R. Malenka,et al.  Coordinated Changes in Dendritic Arborization and Synaptic Strength during Neural Circuit Development , 2009, Neuron.

[53]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[54]  Benjamin Sivyer,et al.  Direction selectivity in the retina: symmetry and asymmetry in structure and function , 2012, Nature Reviews Neuroscience.

[55]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[56]  Azad Bonni,et al.  Regulation of dendrite morphogenesis by extrinsic cues , 2015, Trends in Neurosciences.

[57]  P. Sonderegger,et al.  Cell-cell adhesion by homophilic interaction of the neuronal recognition molecule axonin-1. , 1993, European journal of biochemistry.

[58]  Kazutada Watanabe,et al.  Contactins: emerging key roles in the development and function of the nervous system. , 2009, Cell adhesion & migration.

[59]  H B Barlow,et al.  Direction-Selective Units in Rabbit Retina: Distribution of Preferred Directions , 1967, Science.

[60]  Frank S. Werblin,et al.  Mechanisms and circuitry underlying directional selectivity in the retina , 2002, Nature.

[61]  M. Feller,et al.  Development of synaptic connectivity in the retinal direction selective circuit , 2016, Current Opinion in Neurobiology.

[62]  Masahito Yamagata,et al.  Retinal Ganglion Cells with Distinct Directional Preferences Differ in Molecular Identity, Structure, and Central Projections , 2011, The Journal of Neuroscience.

[63]  J. Sanes,et al.  The types of retinal ganglion cells: current status and implications for neuronal classification. , 2015, Annual review of neuroscience.

[64]  Masahito Yamagata,et al.  SIDEKICK 2 DIRECTS FORMATION OF A RETINAL CIRCUIT THAT DETECTS DIFFERENTIAL MOTION , 2015, Nature.

[65]  Colin L. Stewart,et al.  Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1 , 2003, The Journal of cell biology.

[66]  Masahito Yamagata,et al.  Two Pairs of ON and OFF Retinal Ganglion Cells Are Defined by Intersectional Patterns of Transcription Factor Expression. , 2016, Cell reports.

[67]  M. Kas,et al.  Contactins in the neurobiology of autism. , 2013, European journal of pharmacology.

[68]  J. Sanes,et al.  Direction-selective retinal ganglion cells arise from molecularly specified multipotential progenitors , 2012, Proceedings of the National Academy of Sciences.

[69]  M. Xiang Intrinsic control of mammalian retinogenesis , 2012, Cellular and Molecular Life Sciences.

[70]  J. Sanes,et al.  Molecular identification of a retinal cell type that responds to upward motion , 2008, Nature.

[71]  B. Lowell,et al.  Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. , 2011, Cell metabolism.

[72]  D. Satoh,et al.  Development of Morphological Diversity of Dendrites in Drosophila by the BTB-Zinc Finger Protein Abrupt , 2004, Neuron.

[73]  R. Stacy,et al.  Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina , 2003, The Journal of comparative neurology.

[74]  Masahito Yamagata,et al.  Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina , 2008, Nature.

[75]  A. Bonni,et al.  Cell-intrinsic drivers of dendrite morphogenesis , 2013, Development.

[76]  S. Nakanishi,et al.  OFF‐cholinergic‐pathway‐selective localization of P2X2 purinoceptors in the mouse retina , 2004, The Journal of comparative neurology.

[77]  Linh Vong,et al.  Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons , 2011, Neuron.

[78]  T. Jessell,et al.  Neuronal Ig/Caspr Recognition Promotes the Formation of Axoaxonic Synapses in Mouse Spinal Cord , 2014, Neuron.

[79]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[80]  J. Schlessinger,et al.  Identification of a novel contactin‐associated transmembrane receptor with multiple domains implicated in protein–protein interactions , 1997, The EMBO journal.

[81]  Michael D. Kim,et al.  The bHLH-PAS protein Spineless is necessary for the diversification of dendrite morphology of Drosophila dendritic arborization neurons. , 2006, Genes & development.

[82]  J. Sanes,et al.  Age-Related Alterations in Neurons of the Mouse Retina , 2011, The Journal of Neuroscience.