A carbon-nanotube-based nanorelay
暂无分享,去创建一个
[1] J. Israelachvili. Intermolecular and surface forces , 1985 .
[2] C. J. Chen. Attractive interatomic force as a tunnelling phenomenon , 1991 .
[3] Michel Devoret,et al. Single Charge Tunneling , 1992 .
[4] T. Ebbesen,et al. Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.
[5] Charles M. Lieber,et al. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .
[6] M. Dresselhaus,et al. Physical properties of carbon nanotubes , 1998 .
[7] W. D. Heer,et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.
[8] Charles M. Lieber,et al. Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.
[9] Zettl,et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.
[10] L. Roschier,et al. Multiwalled carbon nanotube: Luttinger versus fermi liquid , 2001 .
[11] Seiji Akita,et al. Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope , 2001 .
[12] Peter C. Eklund,et al. Carbon nanotubes: A thermoelectric nano-nose , 2001 .
[13] Thomas Stöckli,et al. Field emission from carbon nanotubes: the first five years , 2001 .
[14] S. Rotkin,et al. Nanotube devices: A microscopic model , 2002 .
[15] N. Aluru,et al. Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .