Efficiency improvement of Cu2O-based heterojunction solar cells fabricated using thermally oxidized copper sheets

Abstract This paper introduces the present status and prospects for further efficiency improvement of Cu2O-based p–n heterojunction solar cells that feature an n-type oxide semiconductor thin film/p-Cu2O sheet structure. This structure was achieved by both stabilizing the surface of polycrystalline p-Cu2O sheets that had been prepared by thermal oxidization of Cu sheets and also developing low-temperature and low-damage deposition technology for applying thin films as an n-oxide semiconductor layer. The highest efficiency of 5.38% and open circuit voltage of 0.8 V were obtained in an AZO/n-Ga2O3/p-Cu2O heterojunction solar cell fabricated with a non-doped Ga2O3 thin film prepared on a Cu2O sheet at room temperature with a thickness of 75 nm under an O2 gas pressure of 1.7 Pa by a pulsed laser deposition. It should be noted that the obtainable photovoltaic properties in AZO/n-oxide semiconductor/p-Cu2O heterojunction solar cells are considerably more affected by the surface condition of the p-Cu2O layer, i.e., the interface at the heterojunction, than the diffusion potential resulting from the difference of work functions between the p-Cu2O and n-semiconductor layers. To achieve a higher efficiency in AZO/n-oxide semiconductor/p-Cu2O heterojunction solar cells, it is necessary to improve the interface at the heterojunction as well as reduce the series resistance and increase the parallel resistance of the heterojunction solar cells.

[1]  L. Chou,et al.  Bipolar resistive switching of single gold-in-Ga2O3 nanowire. , 2012, Nano letters.

[2]  Hideki Tanaka,et al.  Effect of AZO film deposition conditions on the photovoltaic properties of AZO–Cu2O heterojunctions , 2005 .

[3]  T. Miyata,et al.  Photovoltaic Properties in Al-doped ZnO/non-doped Zn1-XMgXO/Cu2O Heterojunction Solar Cells , 2013 .

[4]  P. Hering,et al.  The band alignment of Cu2O/ZnO and Cu2O/GaN heterostructures , 2012 .

[5]  Kyoung-Shin Choi,et al.  Junction studies on electrochemically fabricated p-n Cu(2)O homojunction solar cells for efficiency enhancement. , 2012, Physical chemistry chemical physics : PCCP.

[6]  Francesca Sarto,et al.  Heterojunction solar cell with 2% efficiency based on a Cu2O substrate , 2006 .

[7]  R. Fornari,et al.  Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3 , 2012 .

[8]  James B. Webb,et al.  Indium tin oxide/Cu2O photovoltaic cells , 1983 .

[9]  L. C. Olsen,et al.  Experimental and theoretical studies of Cu2O solar cells , 1982 .

[10]  Shinzo Takata,et al.  Highly conductive and transparent zinc oxide films prepared by rf magnetron sputtering under an applied external magnetic field , 1982 .

[11]  B. Rai,et al.  Cu2O solar cells: A review , 1988 .

[12]  Hideki Tanaka,et al.  High-Efficiency Oxide Heterojunction Solar Cells Using Cu2O Sheets , 2004 .

[13]  Yuki Nishi,et al.  Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells , 2013 .

[14]  J. Piqueras,et al.  Field emission properties of gallium oxide micro‐ and nanostructures in the scanning electron microscope , 2012 .

[15]  J. Herion,et al.  Investigation of metal oxide/cuprous oxide heterojunction solar cells , 1980 .

[16]  Yuki Nishi,et al.  High-Efficiency Oxide Solar Cells with ZnO/Cu2O Heterojunction Fabricated on Thermally Oxidized Cu2O Sheets , 2011 .

[17]  R. J. Iwanowski,et al.  Enhancement of the photovoltaic conversion efficiency in Cu/Cu2O schottky barrier solar cells by H+ ion irradiation , 1986 .

[18]  Kyoung-Shin Choi,et al.  Effect of Junction Morphology on the Performance of Polycrystalline Cu2O Homojunction Solar Cells , 2010 .

[19]  Yuki Nishi,et al.  The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells , 2013 .

[20]  T. Minami Transparent conducting oxide semiconductors for transparent electrodes , 2005 .

[21]  T. Miyata,et al.  Effect of inserting a thin buffer layer on the efficiency in n-ZnO/p-Cu2O heterojunction solar cells , 2012 .

[22]  A. Berezin,et al.  Cuprous oxide-indium-tin oxide thin film photovoltaic cells , 1983 .

[23]  T. Miyata,et al.  Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering , 1998 .

[24]  H. Nanto,et al.  Electrical and optical properties of zinc oxide thin films prepared by rf magnetron sputtering for transparent electrode applications , 1984 .

[25]  T. Miyata,et al.  Influence of Cu2O surface treatment on the photovoltaic properties of Al-doped ZnO/Cu2O solar cells , 2012 .

[26]  Toshihiro Miyata,et al.  Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunction devices , 2006 .

[27]  L. C. Olsen,et al.  Explanation for low‐efficiency Cu2O Schottky‐barrier solar cells , 1979 .

[28]  X. Bai,et al.  Preparation and electrical properties of ultrafine Ga2O3 nanowires. , 2006, The journal of physical chemistry. B.

[29]  Electronic properties of thin cuprous oxide sheet prepared by infrared light irradiation , 2001 .

[30]  S. Rhee,et al.  Effect of electrode material on the resistance switching of Cu2O film , 2007 .

[31]  N. Economou,et al.  Heterojunction solar cells on cuprous oxide , 1981 .

[32]  Szu-Ying Chen,et al.  Solution-processed all-oxide nanostructures for heterojunction solar cells , 2011 .

[33]  Richard N. Briskman,et al.  A study of electrodeposited cuprous oxide photovoltaic cells , 1992 .

[34]  A. Rakhshani,et al.  Preparation, characteristics and photovoltaic properties of cuprous oxide—a review , 1986 .

[35]  S. Passerini,et al.  Electrodeposited ZnO/Cu2O heterojunction solar cells , 2008 .

[36]  Hideki Tanaka,et al.  Electrical and optical properties of TCO–Cu2O heterojunction devices , 2004 .

[37]  Yuki Nishi,et al.  High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as N-Type Layer , 2013 .