Oscillatory behavior of higher-order neutral type dynamic equations

The oscillation behavior of solutions for higher-order delay dynamic equations of neutral type is investigated by making use of comparison with second-order dynamic equa- tions. The method can be utilized to study other types of higher-order equations on time scales as well.

[1]  A. Peterson,et al.  Boundedness and oscillation for nonlinear dynamic equations on a time scale , 2003 .

[2]  A. Zafer,et al.  Oscillation of Second-Order Mixed-Nonlinear Delay Dynamic Equations , 2010 .

[3]  Samir H. Saker,et al.  Oscillation of nonlinear dynamic equations on time scales , 2004, Appl. Math. Comput..

[4]  Ravi P. Agarwal,et al.  On the oscillation of certain second order nonlinear dynamic equations , 2009, Math. Comput. Model..

[5]  Samir H. Saker,et al.  Oscillation Criteria for Second‐Order Nonlinear Dynamic Equations On Time Scales , 2003 .

[6]  Zhenlai Han,et al.  Oscillation criteria for a class of second-order Emden–Fowler delay dynamic equations on time scales☆ , 2007 .

[7]  J. Džurina Oscillation Theorems for Neutral Differential Equations of Higher Order , 2004 .

[8]  Zhenlai Han,et al.  Oscillation of second-order delay dynamic equations on time scales , 2009 .

[9]  S. Hilger Analysis on Measure Chains — A Unified Approach to Continuous and Discrete Calculus , 1990 .

[10]  Ravi P. Agarwal,et al.  Oscillation Theory for Difference and Functional Differential Equations , 2000 .

[11]  S. H. Saker,et al.  Kamenev-type Oscillation Criteria for Second-Order Linear Delay Dynamic Equations , 2007 .

[12]  Lynn Erbe,et al.  Oscillation of even order nonlinear delay dynamic equations on time scales , 2013 .

[13]  Ravi P. Agarwal,et al.  Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations , 2009 .

[14]  Ravi P. Agarwal,et al.  On the oscillation of second-order half-linear dynamic equations1 , 2009 .

[15]  Lynn Erbe,et al.  Comparison theorems for linear dynamic equations on time scales , 2002 .

[16]  Martin Bohner,et al.  Oscillation criteria for a certain class of second order Emden-Fowler dynamic equations. , 2007 .

[17]  Lynn Erbe,et al.  Asymptotic Behavior of n-t h Order Dynamic Equations , 2011 .

[18]  Martin Bohner,et al.  Oscillation of Second Order Nonlinear Dynamic Equations on Time Scales , 2004 .

[19]  Martin Bohner,et al.  Oscillation for Nonlinear Second Order Dynamic Equations on a Time Scale , 2005 .

[20]  A. Peterson,et al.  Kiguradze-type Oscillation Theorems for Second Order Superlinear Dynamic Equations on Time Scales , 2011, Canadian Mathematical Bulletin.

[21]  B. Karpuz Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients , 2009 .

[22]  R. Agarwal,et al.  Basic Calculus on Time Scales and some of its Applications , 1999 .

[23]  Basak Karpuz,et al.  Asymptotic behaviour of bounded solutions of a class of higher-order neutral dynamic equations , 2009, Appl. Math. Comput..

[24]  R. Agarwal,et al.  Oscillation of higher order nonlinear dynamic equations on time scales , 2012 .

[25]  Douglas R. Anderson,et al.  Please Scroll down for Article Journal of Difference Equations and Applications Interval Criteria for Second-order Super-half-linear Functional Dynamic Equations with Delay and Advance Arguments Interval Criteria for Second-order Super-half-linear Functional Dynamic Equations with Delay and Advance , 2022 .

[26]  A. Peterson,et al.  Dynamic Equations on Time Scales: An Introduction with Applications , 2001 .

[27]  Ravi P. Agarwal,et al.  Interval oscillation criteria for second-order forced delay dynamic equations with mixed nonlinearities , 2010, Comput. Math. Appl..