Strong converse and second-order asymptotics of channel resolvability

We study the problem of channel resolvability for fixed i.i.d. input distributions and discrete memoryless channels (DMCs), and derive the strong converse theorem for any DMCs that are not necessarily full rank. We also derive the optimal second-order rate under a condition. Furthermore, under the condition that a DMC has the unique capacity achieving input distribution, we derive the optimal second-order rate of channel resolvability for the worst input distribution.

[1]  A. Winter Compression of sources of probability distributions and density operators , 2002, quant-ph/0208131.

[2]  Matthieu R. Bloch,et al.  Strong Secrecy From Channel Resolvability , 2011, IEEE Transactions on Information Theory.

[3]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[4]  Ning Cai,et al.  Quantum privacy and quantum wiretap channels , 2004, Probl. Inf. Transm..

[5]  Vincent Yan Fu Tan,et al.  Nonasymptotic and Second-Order Achievability Bounds for Coding With Side-Information , 2013, IEEE Transactions on Information Theory.

[6]  Hiroki Koga,et al.  Information-Spectrum Methods in Information Theory , 2002 .

[7]  Aaron D. Wyner,et al.  The common information of two dependent random variables , 1975, IEEE Trans. Inf. Theory.

[8]  Mark M. Wilde,et al.  Quantum Rate Distortion, Reverse Shannon Theorems, and Source-Channel Separation , 2011, IEEE Transactions on Information Theory.

[9]  Yasutada Oohama Converse Coding Theorems for Identification via Channels , 2013, IEEE Transactions on Information Theory.

[10]  Yossef Steinberg New Converses in the Theory of Identification via Channels , 1998, IEEE Trans. Inf. Theory.

[11]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[12]  Te Sun Han,et al.  Second-Order Resolvability, Intrinsic Randomness, and Fixed-Length Source Coding for Mixed Sources: Information Spectrum Approach , 2011, IEEE Transactions on Information Theory.

[13]  Gou Hosoya,et al.  国際会議参加報告:2014 IEEE International Symposium on Information Theory , 2014 .

[14]  Sergio Verdú,et al.  Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.

[15]  Masahito Hayashi,et al.  An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses , 2007, IEEE Transactions on Information Theory.

[16]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[17]  Masahito Hayashi,et al.  General nonasymptotic and asymptotic formulas in channel resolvability and identification capacity and their application to the wiretap channel , 2006, IEEE Transactions on Information Theory.

[18]  Masahito Hayashi,et al.  Information Spectrum Approach to Second-Order Coding Rate in Channel Coding , 2008, IEEE Transactions on Information Theory.

[19]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[20]  Paul W. Cuff,et al.  Distributed Channel Synthesis , 2012, IEEE Transactions on Information Theory.

[21]  Igor Devetak,et al.  Channel Simulation With Quantum Side Information , 2009, IEEE Transactions on Information Theory.

[22]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[23]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[24]  Vincent Yan Fu Tan,et al.  Non-asymptotic and second-order achievability bounds for source coding with side-information , 2013, 2013 IEEE International Symposium on Information Theory.