Impacts of soil conservation on groundwater recharge in the semi-arid Loess Plateau, China

Soil conservation measures undertaken to address land degradation can alter the hydrologic cycle by changing partitioning of water fluxes at the land surface. While effects on runoff are well documented, impacts of soil conservation activities on fluxes to groundwater are poorly understood. The goal of this study was to examine fluxes to groundwater in a semi-arid area of China’s Loess Plateau that has been subject to extensive soil conservation activities. Unsaturated zone pore-water pressures and concentrations of chloride show that impacts on deep drainage differ between ecological and structural soil conservation approaches. High matric potentials and low chloride beneath cultivated terrace and gulley sites are consistent with deep drainage occurring at these sites. Estimated recharge rates for dryland cultivated upland sites were approximately 55–90 mm/year (11–18% of mean annual rainfall) based upon chloride mass balance. In contrast, results suggest that mature tree and shrub plantations prevent deep drainage. Stable isotope signatures of unsaturated-zone moisture and groundwater indicate that focused infiltration through gullies and other topographic lows is likely to be the primary recharge mechanism. The results of this study highlight the potential for inadvertent effects of some soil conservation approaches on regional water resources.RésuméLes mesures de préservation des sols prises pour lutter contre la dégradation des terres peuvent influencer le cycle hydrologique en changeant la répartition des flux à la surface du terrain. Alors que les effets sur le ruissellement sont bien connus, les impacts des mesures conservatoires du sol sur les flux vers la nappe sont peu compris. L’objectif de cette étude était d’examiner les flux vers la nappe dans une région semi-aride du plateau lœssique de Chine qui a fait l’objet de multiples programmes de conservation des sols. Les pressions d’eau interstitielle dans la zone non saturée et les concentrations en chlorures montrent que les impacts sur le drainage profond diffèrent selon les approches écologique et structurale de préservation des sols. Des potentiels matriciels élevés et de faibles concentrations en chlorures sous sites présentant terrasse cultivée et fossé correspondent à un drainage profond. Les taux de recharge estimés sur terre sèche de haute terrasse sont approximativement de 55−90 mm/an (11–18% des précipitations moyennes annuelles) sur la base du bilan de masse des chlorures. Par contraste, des résultats suggèrent que des plantations d’arbres adultes et d’arbustes évitent un fort drainage. La signature des isotopes stables de l’eau de la zone non saturée et de la nappe indique que l’infiltration dirigée par les fossés et autres points bas topographiques est vraisemblablement le mécanisme de recharge primaire. Les résultats de cette étude mettent en évidence l’existence d’effets potentiels inopportuns de certaines mesures de préservation des sols sur la ressource régionale en eau.ResumenLas medidas de conservación del suelo realizadas para hacer frente a la degradación de la tierra pueden alterar el ciclo hidrológico mediante el cambio de flujos de agua en la superficie terrestre. Mientras que los efectos sobre el escurrimiento superficial están bien documentados, los impactos de las actividades de conservación en los flujos de agua subterránea son poco conocidos. El objetivo de este estudio fue examinar los flujos de agua subterránea en un área semiárida del Loess Plateau en China que ha estado sujeta a extensas actividades de conservación de suelos. Las presiones del agua poral en la zona no saturada y las concentraciones de cloruro muestran que los impactos en el drenaje profundo difieren entre los enfoques ecológicos y estructurales de conservación del suelo. Los altos potenciales mátricos y el bajo cloruro debajo de terrazas cultivadas y sitios con cárcavas están en consonancia con el drenaje profundo que ocurre en estos sitios. Las estimaciones de las tasas de la recarga de las tierras secas cultivadas en sitios altos fueron aproximadamente 55−90 mm/año (11−18% de la media anual de la precipitación) basado en el balance de masa de cloruro. En contraste, los resultados sugieren que los árboles maduros y las plantaciones de arbustos impiden el drenaje profundo. Las firmas de isótopos estables de la humedad en la zona no saturada y el agua subterránea indican que la infiltración centrada a través de las cárcavas y otros bajos topográficos es probable que sea el mecanismo primario de la recarga. Los resultados de este estudio ponen de relieve el potencial de efectos inadvertidos de algunos enfoques de la conservación de suelo en los recursos hídricos regionales.摘要因为改变了地表水通量的分配,为应对土地退化采取的水土保持措施能改变水文循环。关于水土保持对地表径流的影响已有很多报导,但对地下水补给影响的研究还不足。本次研究的目的是查明广泛采取水土保持措施的中国黄土高原半干旱区的地下水补给通量。非饱和带的孔隙水压力和氯离子浓度表明,生态和工程上的水土保持措施对土壤水深层入渗的影响是不同的。耕作梯田和沟谷下具有较高的基质势和较低的氯离子浓度,这些地点通常也发生深层入渗。基于氯质量平衡估算的旱地耕作高地的补给量大约是55–90 mm /year (占年平均降雨量的11–18%)。相反,果树和灌木种植阻碍深层入渗。非饱和带水和地下水中的稳定同位素特征表明,经由沟谷和其他地势低洼处的集中入渗方式可能是主要的地下水补给机制。本次研究的结果明确了一些水土保持措施对区域水资源存在负面影响的可能性。ResumoAs medidas de conservação do solo tomadas para lidar com a degradação do terreno podem alterar o ciclo hidrológico, modificando a repartição dos fluxos de água na superfície terrestre. Enquanto os efeitos no escoamento directo estão bem documentados, os impactes das actividades de conservação do solo nos fluxos para as águas subterrâneas são pouco compreendidos. O objectivo deste estudo foi examinar os fluxos para as águas subterrâneas numa zona semi-árida do planalto chinês de Loess que foi sujeita a actividades extensivas de conservação do solo. As pressões intersticiais de água na zona não saturada e as concentrações de cloretos mostram que os impactes na drenagem profunda diferem entre abordagens de conservação do solo ecológicas e estruturais. Os potenciais matriciais altos e os cloretos baixos sob terraços cultivados e locais ravinados são consistentes com a drenagem profunda que ocorre nestes locais. As taxas de recarga estimadas com base em balanços de massa de cloretos para terrenos secos cultivados foram de aproximadamente 55–90 mm/ano (11–18% da precipitação anual média). Em contraste, os resultados sugerem que árvores maturas e plantações arbustivas impedem a drenagem profunda. As assinaturas de isótopos estáveis na água da zona não saturada e nas águas subterrâneas indicam que a infiltração localizada através de ravinas e outras depressões topográficas é provavelmente o mecanismo de recarga primário. Os resultados deste estudo destacam o potencial para efeitos inadvertidos de algumas abordagens de conservação do solo nos recursos hídricos regionais.

[1]  Lu Zhang,et al.  Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China , 2008 .

[2]  M. Shao,et al.  A comparison of fine root distribution and water consumption of mature Caragana korshinkii Kom grown in two soils in a semiarid region, China , 2009, Plant and Soil.

[3]  B. Scanlon,et al.  Choosing appropriate techniques for quantifying groundwater recharge , 2002 .

[4]  J. Hem Study and Interpretation of the Chemical Characteristics of Natural Water , 1989 .

[5]  Andrew W. Western,et al.  A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation , 2005 .

[6]  B. Scanlon,et al.  Estimating groundwater recharge in a cold desert environment in northern China using chloride , 2008 .

[7]  B. Fu,et al.  The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China , 2007 .

[8]  Li Zhanbin,et al.  Down-scale analysis for water scarcity in response to soil–water conservation on Loess Plateau of China , 2003 .

[9]  Yun-qiang Wang,et al.  A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China , 2010 .

[10]  Y. Qiu,et al.  Effects of land use on soil erosion and nitrogen loss in the hilly area of the Loess Plateau, China , 2004 .

[11]  S. P. Neuman,et al.  Field test of a modified numerical model for water uptake by root systems , 1974 .

[12]  Y. Guirui,et al.  Influences of error distributions of net ecosystem exchange on parameter estimation of a process-based terrestrial model: A case of broad-leaved Korean pine mixed forest in Changbaishan, China , 2008 .

[13]  Dongmei Han,et al.  Recharge history and controls on groundwater quality in the Yuncheng Basin, north China , 2010 .

[14]  T. McVicar,et al.  Developing a decision support tool for China's re-vegetation program: Simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau , 2007 .

[15]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[16]  Z. Pang,et al.  Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers , 2008 .

[17]  M. Shao,et al.  The characteristics of soil water cycle and water balance on steep grassland under natural and simulated rainfall conditions in the Loess Plateau of China , 2008 .

[18]  G. Favreau,et al.  Long-term rise in a Sahelian water-table: the Continental Terminal in South-West Niger , 2001 .

[19]  R. Lal,et al.  Soil erosion and the global carbon budget. , 2003, Environment international.

[20]  J. Gallichand,et al.  RUNOFF AND SEDIMENT RESPONSES TO CONSERVATION PRACTICES: LOESS PLATEAU OF CHINA 1 , 2003 .

[21]  G. B. Allison,et al.  Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen , 1988 .

[22]  Glen R. Walker,et al.  Land clearance and river salinisation in the western Murray Basin, Australia , 1990 .

[23]  Li Peng,et al.  Vertical root distribution characters ofRobinia pseudoacacia on the Loess Plateau in China , 2004, Journal of Forestry Research.

[24]  Bojie Fu,et al.  Soil erosion and its control in the loess plateau of China , 1989 .

[25]  R. Lal,et al.  Soil degradation by erosion , 2001 .

[26]  I. Clark,et al.  Environmental Isotopes in Hydrogeology , 1997 .

[27]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[28]  Zhonghe Pang,et al.  Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: a case study at Guyuan and Xifeng in the Loess Plateau of China , 2011 .

[29]  H. Grip,et al.  Modelling the effects of mulching and fallow cropping on water balance in the Chinese Loess Plateau , 2007 .

[30]  Bruce A. McCarl,et al.  Trading Water for Carbon with Biological Carbon Sequestration , 2005, Science.

[31]  Jacques Gallichand,et al.  Use of the SHAW model to assess soil water recovery after apple trees in the gully region of the Loess Plateau, China , 2006 .

[32]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[33]  B. Scanlon,et al.  Field study of spatial variability in unsaturated flow beneath and adjacent to playas , 1997 .

[34]  R. Reedy,et al.  Inventories and mobilization of unsaturated zone sulfate, fluoride, and chloride related to land use change in semiarid regions, southwestern United States and Australia , 2009 .

[35]  M. Shao,et al.  Soil desiccation in the Loess Plateau of China , 2008 .

[36]  Philip W. Gassman,et al.  Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions , 2008 .

[37]  T. McVicar,et al.  Analysis of the impact of conservation measures on stream flow regime in catchments of the Loess Plateau, China , 2007 .

[38]  Li Jun,et al.  Effects of deep soil desiccation on artificial forestlands in different vegetation zones on the Loess Plateau of China , 2008 .

[39]  Shuxia Zheng,et al.  Ecological properties of soil water and effects on forest vegetation in the Loess Plateau , 2006 .

[40]  M. Schaap,et al.  ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions , 2001 .

[41]  J. D. Mcneill Electromagnetic Terrain Conduc-tivity Measurement at Low Induction Numbers , 1980 .

[42]  T. McVicar,et al.  Modelling the impact of afforestation on average annual streamflow in the Loess Plateau, China , 2008 .

[43]  Li Wang,et al.  Soil desiccation for Loess soils on natural and regrown areas , 2008 .

[44]  H. Grip,et al.  Soil hydraulic properties of two loess soils in China measured by various field-scale and laboratory methods , 2007 .

[45]  D. B. Thompson,et al.  Quantifying Macropore Recharge: Examples from a Semi‐Arid Area , 1997 .

[46]  Lu Zhang,et al.  Hydrological responses to conservation practices in a catchment of the Loess Plateau, China , 2004 .

[47]  R. Reedy,et al.  Impact of land use and land cover change on groundwater recharge and quality in the southwestern US , 2005 .

[48]  R. Lal,et al.  The global impact of soil erosion on productivity. II. Effects on crop yields and production over time , 2003 .

[49]  J. Gallichand,et al.  Runoff responses to afforestation in a watershed of the Loess Plateau, China , 2003 .

[50]  R. Reedy,et al.  Soil water content monitoring using electromagnetic induction , 2003 .

[51]  B. Fu,et al.  The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China , 2003 .

[52]  Stefan Uhlenbrook,et al.  Biofuel and water cycle dynamics: what are the related challenges for hydrological processes research? , 2007 .

[53]  F. Zheng Effect of Vegetation Changes on Soil Erosion on the Loess Plateau , 2006 .

[54]  E. Eriksson,et al.  Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel Coastal Plain , 1969 .

[55]  Lu Zhang,et al.  Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality , 2007 .

[56]  G. Sun,et al.  Potential water yield reduction due to forestation across China , 2006 .

[57]  K. Wei,et al.  Tritium profiles of pore water in the Chinese loess unsaturated zone: Implications for estimation of groundwater recharge , 2006 .

[58]  P. Unger,et al.  Common soil and water conservation practices. , 1996 .

[59]  Z. Shangguan,et al.  Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions , 2006 .

[60]  M. Hughes,et al.  The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer , 1978 .

[61]  J. Nimmo,et al.  Field tracer investigation of unsaturated zone flow paths and mechanisms in agricultural soils of northwestern Mississippi, USA , 2011 .

[62]  W. Edmunds,et al.  Estimating paleorecharge and paleoclimate from unsaturated zone profiles , 1992 .

[63]  X. Jianming,et al.  Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China plain , 2003 .

[64]  W. Edmunds,et al.  Solute Profile Techniques for Recharge Estimation in Semi-Arid and Arid Terrain , 1988 .

[65]  Lu Zhang,et al.  Response of mean annual evapotranspiration to vegetation changes at catchment scale , 2001 .