A methodology to simulate low velocity impact and compression after impact in large composite stiffened panels

Abstract Low velocity impact events significantly reduce the mechanical performance of composite structures even though the damage might be barely visible. Numerical simulations can be used to understand and improve the damage resistance and tolerance of composite structures. However, numerical simulations are usually computationally intensive and their application in large composite structures is limited. Furthermore, the numerical models require many parameters that affect their efficiency, accuracy, objectivity and robustness. The present work describes a methodology to simulate low velocity impact and compression after impact which is applied to a composite stiffened panel undergoing visible impact damage. The key definitions are discussed and special attention is devoted to the computational efficiency. The numerical results are compared with experimental data, and the suitability of the proposed methodology is discussed.

[1]  E. V. González,et al.  Characterization of the translaminar fracture Cohesive Law , 2016 .

[2]  Albert Turon,et al.  Accurate simulation of delamination under mixed-mode loading using a cohesive model with a mode-dependent penalty stiffness , 2018 .

[3]  Pedro P. Camanho,et al.  A continuum damage model for composite laminates: Part I - Constitutive model , 2007 .

[4]  Pedro P. Camanho,et al.  Failure Criteria for FRP Laminates , 2005 .

[5]  Francesco Caputo,et al.  Impact behaviour of omega stiffened composite panels , 2016 .

[6]  Pierre Ladevèze,et al.  Damage modelling of the elementary ply for laminated composites , 1992 .

[7]  J. Llorca,et al.  Physically-sound simulation of low-velocity impact on fiber reinforced laminates , 2016 .

[8]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[9]  Pedro P. Camanho,et al.  A continuum damage model for composite laminates: Part II – Computational implementation and validation , 2007 .

[10]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[11]  Pedro P. Camanho,et al.  Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear , 2006 .

[12]  Pedro P. Camanho,et al.  Matrix cracking and delamination in laminated composites. Part I: Ply constitutive law, first ply failure and onset of delamination , 2011 .

[13]  S. Hallett,et al.  Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations , 2017 .

[14]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[15]  Lorenzo Iannucci,et al.  Progressive failure modelling of woven carbon composite under impact , 2006 .

[16]  Dusan Krajcinovic,et al.  CONTINUUM DAMAGE MECHANICS , 1984 .

[17]  M.F.S.F. de Moura,et al.  Bilinear approximations to the mode II delamination cohesive law using an inverse method , 2012 .

[18]  Pedro P. Camanho,et al.  Determination of the mode I crack resistance curve of polymer composites using the size-effect law , 2014 .

[19]  P. Cruz,et al.  Simulating drop-weight impact and compression after impact tests on composite laminates using conventional shell finite elements , 2018, International Journal of Solids and Structures.

[20]  Larsgunnar Nilsson,et al.  Simulating DCB, ENF and MMB experiments using shell elements and a cohesive zone model , 2004 .

[21]  A. M. Kabeel,et al.  Nominal strength of quasi-brittle open hole specimens under biaxial loading conditions , 2013 .

[22]  Stephen R Hallett,et al.  Prediction of impact damage in composite plates , 2000 .

[23]  Michael Ortiz,et al.  A constitutive theory for the inelastic behavior of concrete , 1985 .

[24]  Alastair Johnson,et al.  Computational methods for predicting impact damage in composite structures , 2001 .

[25]  Ignace Verpoest,et al.  Modelling of the interaction between matrix cracks and delaminations during impact of composite plates , 1996 .

[26]  P. Camanho,et al.  A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites , 2009 .

[27]  P. Camanho,et al.  Three-dimensional failure criteria for fiber-reinforced laminates , 2013 .

[28]  Rodney S. Thomson,et al.  Review of methodologies for composite material modelling incorporating failure , 2008 .

[29]  Sarah E. Mouring,et al.  Modelling impact damage in marine composite panels , 2009 .

[30]  Albert Turon,et al.  Cohesive zone length of orthotropic materials undergoing delamination , 2016 .

[31]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[32]  N. Gascons,et al.  Size Effect Law and Critical Distance Theories to Predict the Nominal Strength of Quasibrittle Structures , 2013 .

[33]  Ahmed K. Noor,et al.  Computational Models for Sandwich Panels and Shells , 1996 .

[34]  Romil Tanov,et al.  A nonlinear higher order shear deformation shell element for dynamic explicit analysis: part I. formulation and finite element equations , 2000 .

[35]  Heinz E. Pettermann,et al.  Failure mechanism based modelling of impact on fabric reinforced composite laminates based on shell elements , 2016 .

[36]  Brian Falzon,et al.  A progressive failure model for composite laminates subjected to low velocity impact damage , 2008 .

[37]  Romain Boman,et al.  Finite element modelling of composite structures under crushing load , 2015 .

[38]  Vladislav Laš,et al.  Progressive Damage of Unidirectional Composite Panels , 2008 .

[39]  Mazdak Ghajari,et al.  Compression After Multiple Impacts: Modelling and Experimental Validation on Composite Curved Stiffened Panels , 2016 .

[40]  Christophe Bouvet,et al.  Failure analysis of CFRP laminates subjected to compression after impact: FE simulation using discrete interface elements , 2013 .

[41]  Laurent Daudeville,et al.  Delamination analysis by damage mechanics: Some applications , 1995 .

[42]  Brian Falzon,et al.  Predicting low-velocity impact damage on a stiffened composite panel , 2010 .

[43]  G. Alfano On the influence of the shape of the interface law on the application of cohesive-zone models , 2006 .

[44]  E. V. González,et al.  Low velocity impact and compression after impact simulation of thin ply laminates , 2018, Composites Part A: Applied Science and Manufacturing.

[45]  Reza Vaziri,et al.  A physically based continuum damage mechanics model for thin laminated composite structures , 2003 .

[46]  Brian Falzon,et al.  Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates , 2015 .

[47]  N. K. Naik,et al.  Estimation of compressive strength of delaminated composites , 2001 .

[48]  Robin Olsson,et al.  Analytical prediction of large mass impact damage in composite laminates , 2001 .

[49]  Brian Falzon,et al.  Delamination threshold load for dynamic impact on plates , 2006 .

[50]  Christophe Bouvet,et al.  Low velocity impact modelling in laminate composite panels with discrete interface elements , 2009 .

[51]  Francesco Aymerich,et al.  Finite element modelling of damage induced by low-velocity impact on composite laminates , 2014 .

[52]  Michael R Wisnom,et al.  Influence of process induced defects on the failure of composite T-joint specimens , 2012 .

[53]  Serge Abrate,et al.  Modeling of impacts on composite structures , 2001 .

[54]  Lorenzo Iannucci,et al.  A progressive failure model for mesh-size-independent FE analysis of composite laminates subject to low-velocity impact damage , 2012 .

[55]  Robert L. Taylor,et al.  A constitutive model for anisotropic damage in fiber-composites , 1995 .

[56]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[57]  Pedro P. Camanho,et al.  A damage model for the simulation of delamination in advanced composites under variable-mode loading , 2006 .

[58]  E. V. González,et al.  A continuum constitutive model for the simulation of fabric-reinforced composites , 2014 .

[59]  Pedro P. Camanho,et al.  The effect of through-thickness compressive stress on mode II interlaminar fracture toughness , 2017 .

[60]  Lorenzo Iannucci,et al.  An energy based damage mechanics approach to modelling impact onto woven composite materials-Part I: Numerical models , 2006 .

[61]  Pedro P. Camanho,et al.  Simulation of drop-weight impact and compression after impact tests on composite laminates , 2012 .

[62]  Zafer Gürdal,et al.  Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations , 2009 .