Bayesian estimation for the exponentiated Weibull model under Type II progressive censoring

Based on progressive Type II censored samples, we have derived the maximum likelihood and Bayes estimators for the two shape parameters and the reliability function of the exponentiated Weibull lifetime model. We obtained Bayes estimators using both the symmetric and asymmetric loss functions via squared error loss and linex loss functions. This was done with respect to the conjugate priors for two shape parameters. We used an approximation based on the Lindley (Trabajos de Stadistca 21, 223–237, 1980) method for obtaining Bayes estimates under these loss functions. We made comparisons between these estimators and the maximum likelihood estimators using a Monte Carlo simulation study.

[1]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[2]  Nancy R. Mann,et al.  Best Linear Invariant Estimation for Weibull Parameters Under Progressive Censoring , 1971 .

[3]  A. Cohen,et al.  Progressively Censored Samples in Life Testing , 1963 .

[4]  Rita Aggarwala Ch. 13. Progressive censoring: A review , 2001 .

[5]  A. Zellner Bayesian Estimation and Prediction Using Asymmetric Loss Functions , 1986 .

[6]  Narayanaswamy Balakrishnan,et al.  A Simple Simulational Algorithm for Generating Progressive Type-II Censored Samples , 1995 .

[7]  S. Nadarajah,et al.  The exponentiated Weibull distribution: a survey , 2013 .

[8]  Narayanaswamy Balakrishnan,et al.  Interval Estimation of Parameters of Life From Progressively Censored Data , 1994 .

[9]  Ancha Xu,et al.  Objective Bayesian analysis of Pareto distribution under progressive Type-II censoring ✩ , 2012 .

[10]  Alan D. Hutson,et al.  The exponentiated weibull family: some properties and a flood data application , 1996 .

[11]  M. Nassar,et al.  Bayesian Estimation for the Exponentiated Weibull Model , 2005 .

[12]  D. Lindley,et al.  Approximate Bayesian methods , 1980 .

[13]  R. Jiang,et al.  The exponentiated Weibull family: a graphical approach , 1999 .

[14]  M. Nassar,et al.  On the Exponentiated Weibull Distribution , 2003 .

[15]  G. S. Mudholkar,et al.  Exponentiated Weibull family for analyzing bathtub failure-rate data , 1993 .