Bulk reconstruction in moduli space holography

It was recently suggested that certain UV-completable supersymmetric actions can be characterized by the solutions to an auxiliary non-linear sigma-model with special asymptotic boundary conditions. The space-time of this sigma-model is the scalar field space of these effective theories while the target space is a coset space. We study this sigma-model without any reference to a potentially underlying geometric description. Using a holographic approach reminiscent of the bulk reconstruction in the AdS/CFT correspondence, we then derive its near-boundary solutions for a two-dimensional space-time. Specifying a set of Sl(2,R) boundary data we show that the near-boundary solutions are uniquely fixed after imposing a single bulk-boundary matching condition. The reconstruction exploits an elaborate set of recursion relations introduced by Cattani, Kaplan, and Schmid in the proof of the Sl(2)-orbit theorem. We explicitly solve these recursion relations for three sets of simple boundary data and show that they model asymptotic periods of a Calabi–Yau threefold near the conifold point, the large complex structure point, and the Tyurin degeneration. t.w.grimm@uu.nl j.monnee@uu.nl d.t.e.vandeheisteeg@uu.nl 1 ar X iv :2 10 3. 12 74 6v 1 [ he pth ] 2 3 M ar 2 02 1

[1]  T. Weigand,et al.  A stringy test of the Scalar Weak Gravity Conjecture , 2018, Nuclear Physics B.

[2]  F. Quevedo,et al.  Putting the boot into the swampland , 2018, Journal of High Energy Physics.

[3]  Are tiny gauge couplings out of the Swampland? , 2017, 1708.02249.

[4]  T. Weigand,et al.  Quantum corrections in 4d N = 1 infinite distance limits and the weak gravity conjecture , 2020, 2011.00024.

[5]  S. Cecotti Moduli spaces of Calabi-Yau d-folds as gravitational-chiral instantons , 2020, Journal of High Energy Physics.

[6]  H. Ooguri,et al.  Bulk locality and boundary creating operators , 2015, 1507.04130.

[7]  R. Blumenhagen,et al.  Small Flux Superpotentials for Type IIB Flux Vacua Close to a Conifold , 2020, Fortschritte der Physik.

[8]  Abhinav Joshi,et al.  Swampland distance conjecture for one-parameter Calabi-Yau threefolds , 2019, Journal of High Energy Physics.

[9]  Y. Verbin,et al.  Lower-dimensional gravity. , 1994, Physical review. D, Particles and fields.

[10]  Ethan Dyer,et al.  Universal bounds on charged states in 2d CFT and 3d gravity , 2016, 1603.09745.

[11]  T. Weigand,et al.  Emergent strings, duality and weak coupling limits for two-form fields , 2019, Journal of High Energy Physics.

[12]  C. Teitelboim Gravitation and hamiltonian structure in two spacetime dimensions , 1983 .

[13]  W. Schmid Variation of hodge structure: The singularities of the period mapping , 1973 .

[14]  T. Takayanagi,et al.  Cobordism Conjecture in AdS , 2020, 2006.13953.

[15]  Y. Nomura,et al.  Weak gravity conjecture in the AdS/CFT correspondence , 2015 .

[16]  H. Ooguri,et al.  Constraints on Symmetries from Holography. , 2018, Physical review letters.

[17]  R. Blumenhagen,et al.  The refined Swampland Distance Conjecture in Calabi-Yau moduli spaces , 2018, Journal of High Energy Physics.

[18]  Xenia de la Ossa,et al.  A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory , 1991 .

[19]  D. Harlow Wormholes, emergent gauge fields, and the weak gravity conjecture , 2015, 1510.07911.

[20]  L. McAllister,et al.  Conifold Vacua with Small Flux Superpotential , 2020, Fortschritte der Physik.

[21]  F. Marchesano,et al.  Instantons and infinite distances , 2019, Journal of High Energy Physics.

[22]  Fabian Ruehle,et al.  Classifying Calabi–Yau Threefolds Using Infinite Distance Limits , 2019, Communications in Mathematical Physics.

[23]  A. Font,et al.  The Swampland Distance Conjecture and towers of tensionless branes , 2019, Journal of High Energy Physics.

[24]  M. Montero A holographic derivation of the weak gravity conjecture , 2018, Journal of High Energy Physics.

[25]  Thomas W. Grimm,et al.  Infinite distances and the axion weak gravity conjecture , 2019, Journal of High Energy Physics.

[26]  T. Weigand,et al.  Tensionless strings and the weak gravity conjecture , 2018, Journal of High Energy Physics.

[27]  G. Shiu,et al.  The Weak Gravity Conjecture in three dimensions , 2016, 1606.08438.

[28]  D. Harlow TASI Lectures on the Emergence of Bulk Physics in AdS/CFT , 2017, Proceedings of Theoretical Advanced Study Institute Summer School 2017 "Physics at the Fundamental Frontier" — PoS(TASI2017).

[29]  A. Tyurin Fano versus Calabi - Yau , 2003, math/0302101.

[30]  E. Palti,et al.  Infinite distance networks in field space and charge orbits , 2018, Journal of High Energy Physics.

[31]  $\rm{SL}_2$-orbits and degenerations of mixed Hodge structure , 2003, math/0309439.

[32]  Thomas W. Grimm Moduli space holography and the finiteness of flux vacua , 2020, Journal of High Energy Physics.

[33]  A. Borel,et al.  Corners and arithmetic groups , 1973 .

[34]  Holographic representation of local bulk operators , 2006, hep-th/0606141.

[35]  I. Valenzuela,et al.  Merging the weak gravity and distance conjectures using BPS extremal black holes , 2020, Journal of High Energy Physics.

[36]  M. Heidrich Wormholes , 2021, Black Holes, Cosmology and Extra Dimensions.

[37]  Counting flux vacua , 2003, hep-th/0307049.

[38]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[39]  H. Ooguri,et al.  On the Geometry of the String Landscape and the Swampland , 2006, hep-th/0605264.

[40]  E. Palti,et al.  The Swampland: Introduction and Review , 2019, Fortschritte der Physik.

[41]  E. Palti,et al.  Super-Planckian spatial field variations and quantum gravity , 2016, 1610.00010.

[42]  S. Donaldson,et al.  Nahm's equations and the classification of monopoles , 1984 .

[43]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[44]  L. McAllister,et al.  Vacua with Small Flux Superpotential. , 2019, Physical review letters.

[45]  Sungjay Lee,et al.  Modular constraints on superconformal field theories , 2018, Journal of High Energy Physics.

[46]  A Finite Landscape , 2006, hep-th/0606212.

[47]  Ying-Hsuan Lin,et al.  Anomalies and bounds on charged operators , 2019, Physical Review D.

[48]  I. Valenzuela,et al.  Asymptotic flux compactifications and the swampland , 2019, 1910.09549.

[49]  Thomas W. Grimm,et al.  The Swampland Distance Conjecture for Kähler moduli , 2018, Journal of High Energy Physics.

[50]  Periods of Limit Mixed Hodge Structures , 2003, math/0305090.

[51]  E. Palti,et al.  Infinite distances in field space and massless towers of states , 2018, Journal of High Energy Physics.

[52]  W. Schmid,et al.  DEGENERATION OF HODGE-STRUCTURES , 1986 .