Advances in insect phylogeny at the dawn of the postgenomic era.

Most species on Earth are insects and thus, understanding their evolutionary relationships is key to understanding the evolution of life. Insect relationships are increasingly well supported, due largely to technological advances in molecular sequencing and phylogenetic computational analysis. In this postgenomic era, insect systematics will be furthered best by integrative methods aimed at hypothesis corroboration from molecular, morphological, and paleontological evidence. This review of the current consensus of insect relationships provides a foundation for comparative study and offers a framework to evaluate incoming genomic evidence. Notable recent phylogenetic successes include the resolution of Holometabola, including the identification of the enigmatic Strepsiptera as a beetle relative and the early divergence of Hymenoptera; the recognition of hexapods as a crustacean lineage within Pancrustacea; and the elucidation of Dictyoptera orders, with termites placed as social cockroaches. Regions of the tree that require further investigation include the earliest winged insects (Palaeoptera) and Polyneoptera (orthopteroid lineages).

[1]  N. P. Kristensen Phylogeny of endopterygote insects, the most successful lineage of living organisms , 2013 .

[2]  R. Beutel,et al.  On the head morphology of Phyllium and the phylogenetic relationships of Phasmatodea (Insecta) , 2012 .

[3]  A. Seago,et al.  Phylogeny of the Coleoptera Based on Morphological Characters of Adults and Larvae , 2011 .

[4]  R. Copley,et al.  Improving animal phylogenies with genomic data. , 2011, Trends in genetics : TIG.

[5]  R. Beutel,et al.  On the head morphology of Grylloblattodea (Insecta) and the systematic position of the order, with a new nomenclature for the head muscles of Dicondylia , 2011 .

[6]  Susan J. Brown,et al.  Creating a buzz about insect genomes. , 2011, Science.

[7]  Markus Friedrich,et al.  Episodic radiations in the fly tree of life , 2011, Proceedings of the National Academy of Sciences.

[8]  H. Philippe,et al.  Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough , 2011, PLoS biology.

[9]  Alex Boyd,et al.  Hal: an Automated Pipeline for Phylogenetic Analyses of Genomic Data , 2011, PLoS currents.

[10]  T. Miyata,et al.  Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. , 2011, Molecular phylogenetics and evolution.

[11]  A. Ricci,et al.  The mitochondrial genome of Bacillus stick insects (Phasmatodea) and the phylogeny of orthopteroid insects. , 2011, Molecular phylogenetics and evolution.

[12]  J. Pardo,et al.  First Fossil Orthoptera from the Jurassic of North America , 2011, Journal of Paleontology.

[13]  T. Fischer,et al.  First beetle elytra, abdomen (Coleoptera) and a mine trace from Lunz (Carnian, Late Triassic, Lunz‐am‐See, Austria) and their taphonomical and evolutionary aspects , 2011 .

[14]  R. Beutel,et al.  Adult head structures of Deuterophlebiidae (Insecta), a highly derived "ancestral" dipteran lineage. , 2011, Arthropod structure & development.

[15]  G. Edgecombe,et al.  A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata , 2011, Proceedings of the Royal Society B: Biological Sciences.

[16]  C. Labandeira The Pollination of Mid Mesozoic Seed Plants and the Early History of Long-proboscid Insects1,2,3 , 2010 .

[17]  R. Beutel,et al.  Goodbye Halteria? The thoracic morphology of Endopterygota (Insecta) and its phylogenetic implications , 2010, Cladistics : the international journal of the Willi Hennig Society.

[18]  A. von Haeseler,et al.  A phylogenomic approach to resolve the arthropod tree of life. , 2010, Molecular biology and evolution.

[19]  Ryan J. Yoder,et al.  Expressed sequence tags reveal Proctotrupomorpha (minus Chalcidoidea) as sister to Aculeata (Hymenoptera: Insecta). , 2010, Molecular phylogenetics and evolution.

[20]  N. Wahlberg,et al.  Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies , 2010, Proceedings of the Royal Society B: Biological Sciences.

[21]  D. Grimaldi,et al.  Reconstructing the anatomy of the 42-million-year-old fossil †Mengeatertiaria (Insecta, Strepsiptera) , 2010, Die Naturwissenschaften.

[22]  Brian D. Farrell,et al.  9-Genes Reinforce the Phylogeny of Holometabola and Yield Alternate Views on the Phylogenetic Placement of Strepsiptera , 2010, PloS one.

[23]  Gavin J. Svenson,et al.  Family‐level relationships of the spittlebugs and froghoppers (Hemiptera: Cicadomorpha: Cercopoidea) , 2010 .

[24]  N. Hardy,et al.  On wings of lace: phylogeny and Bayesian divergence time estimates of Neuropterida (Insecta) based on morphological and molecular data , 2010 .

[25]  R. Beutel,et al.  Head morphology of Osmylus fulvicephalus (Osmylidae, Neuroptera) and its phylogenetic implications , 2010, Organisms Diversity & Evolution.

[26]  A. Vogler,et al.  Ribosomal protein genes of holometabolan insects reject the Halteria, instead revealing a close affinity of Strepsiptera with Coleoptera. , 2010, Molecular phylogenetics and evolution.

[27]  K. Yoshizawa,et al.  How stable is the "Polyphyly of Lice" hypothesis (Insecta: Psocodea)?: a comparison of phylogenetic signal in multiple genes. , 2010, Molecular phylogenetics and evolution.

[28]  L. Vilhelmsen,et al.  Beyond the wasp‐waist: structural diversity and phylogenetic significance of the mesosoma in apocritan wasps (Insecta: Hymenoptera) , 2010 .

[29]  J. Mallatt,et al.  Nearly complete rRNA genes assembled from across the metazoan animals: effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction. , 2010, Molecular phylogenetics and evolution.

[30]  K. Yoshizawa,et al.  Direct optimization overly optimizes data , 2010 .

[31]  R. Beutel,et al.  The larval head of Nevrorthidae and the phylogeny of Neuroptera (Insecta) , 2010 .

[32]  D. Grimaldi 400 million years on six legs: on the origin and early evolution of Hexapoda. , 2010, Arthropod structure & development.

[33]  J. Shultz,et al.  Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences , 2010, Nature.

[34]  Daniel Janies,et al.  Tracking the geographical spread of avian influenza (H5N1) with multiple phylogenetic trees , 2010, Cladistics : the international journal of the Willi Hennig Society.

[35]  B. Schierwater,et al.  On the value of Elongation factor-1alpha for reconstructing pterygote insect phylogeny. , 2010, Molecular phylogenetics and evolution.

[36]  Mark Johnston,et al.  Leveraging skewed transcript abundance by RNA-Seq to increase the genomic depth of the tree of life , 2010, Proceedings of the National Academy of Sciences.

[37]  I-Min A. Chen,et al.  The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata , 2007, Nucleic Acids Res..

[38]  G. Edgecombe,et al.  The position of crustaceans within Arthropoda - Evidence from nine molecular loci and morphology , 2010 .

[39]  Fredrik Ronquist,et al.  Bayesian phylogenetics and its influence on insect systematics. , 2010, Annual review of entomology.

[40]  D. Janzen,et al.  Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study , 2009, BMC Evolutionary Biology.

[41]  J. Ribeiro,et al.  The Tempo and Mode of Evolution of Transposable Elements as Revealed by Molecular Phylogenies Reconstructed from Mosquito Genomes , 2009, Evolution; international journal of organic evolution.

[42]  A. von Haeseler,et al.  A phylogenomic approach to resolve the basal pterygote divergence. , 2009, Molecular biology and evolution.

[43]  Mark Johnston,et al.  Benchmarking next-generation transcriptome sequencing for functional and evolutionary genomics. , 2009, Molecular biology and evolution.

[44]  T. Burmester,et al.  Hemocyanin suggests a close relationship of Remipedia and Hexapoda. , 2009, Molecular biology and evolution.

[45]  M. Whiting,et al.  A mitochondrial genome phylogeny of the Neuropterida (lace‐wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders , 2009 .

[46]  A. V. Konstantinova,et al.  On the phylogenetic position of insects in the Pancrustacea clade , 2009, Molecular Biology.

[47]  R. Beutel,et al.  Probing the Drosophila retinal determination gene network in Tribolium (II): The Pax6 genes eyeless and twin of eyeless. , 2009, Developmental biology.

[48]  David K Yeates,et al.  Single-copy nuclear genes resolve the phylogeny of the holometabolous insects , 2009, BMC Biology.

[49]  M. Friedrich,et al.  Molecular evolution of the Drosophila retinome: exceptional gene gain in the higher Diptera. , 2009, Molecular biology and evolution.

[50]  Antonis Rokas,et al.  Harnessing genomics for evolutionary insights. , 2009, Trends in ecology & evolution.

[51]  Yan Qin,et al.  Phylogenetic comparison of local length plasticity of the small subunit of nuclear rDNAs among all Hexapoda orders and the impact of hyper-length-variation on alignment. , 2009, Molecular phylogenetics and evolution.

[52]  M. Telford,et al.  Arthropods Are Monophyletic Arthropods Are Ecdysozoans the Origin and Evolution of Arthropods Insight Review , 2022 .

[53]  Christophe Dessimoz,et al.  Phylogenetic and Functional Assessment of Orthologs Inference Projects and Methods , 2009, PLoS Comput. Biol..

[54]  P. Cranston,et al.  Phylogeny of Insects , 2009 .

[55]  Naomi S. Altman,et al.  Comparison of next generation sequencing technologies for transcriptome characterization , 2009, BMC Genomics.

[56]  J. Wägele,et al.  Can comprehensive background knowledge be incorporated into substitution models to improve phylogenetic analyses? A case study on major arthropod relationships , 2009, BMC Evolutionary Biology.

[57]  Jason E Stajich,et al.  Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. , 2008, Systematic biology.

[58]  K. Zhou,et al.  The complete mitochondrial genome of Parafronurus youi (Insecta: Ephemeroptera) and phylogenetic position of the Ephemeroptera. , 2008, Gene.

[59]  S. Pongor,et al.  The quest for orthologs: finding the corresponding gene across genomes. , 2008, Trends in genetics : TIG.

[60]  M. Whiting,et al.  Head morphology of Caurinus (Boreidae, Mecoptera) and its phylogenetic implications. , 2008, Arthropod structure & development.

[61]  T. Lovejoy Climate change and biodiversity. , 2008, Revue scientifique et technique.

[62]  K. Klass,et al.  Relationships among the major lineages of Dictyoptera: the effect of outgroup selection on dictyopteran tree topology , 2008 .

[63]  David Q. Matus,et al.  Broad phylogenomic sampling improves resolution of the animal tree of life , 2008, Nature.

[64]  Michael Q. Zhang,et al.  Identification of phylogenetically conserved microRNA cis-regulatory elements across 12 Drosophila species , 2008, Bioinform..

[65]  D. Jarzen,et al.  Early steps of angiosperm–pollinator coevolution , 2008, Proceedings of the National Academy of Sciences.

[66]  R. Beutel,et al.  The thorax of Zorotypus (Hexapoda, Zoraptera) and a new nomenclature for the musculature of Neoptera. , 2008, Arthropod structure & development.

[67]  K. Kjer,et al.  Ancient rapid radiations of insects: challenges for phylogenetic analysis. , 2008, Annual review of entomology.

[68]  D. Roelofs,et al.  Revealing pancrustacean relationships: Phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers , 2008, BMC Evolutionary Biology.

[69]  B. Misof,et al.  Towards an 18S phylogeny of hexapods: accounting for group-specific character covariance in optimized mixed nucleotide/doublet models. , 2007, Zoology.

[70]  Pietro Liò,et al.  Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and Crustacea , 2007, BMC Evolutionary Biology.

[71]  Frank Hünefeld The genital morphology of Zorotypus hubbardi Caudell, 1918 (Insecta: Zoraptera: Zorotypidae) , 2007, Zoomorphology.

[72]  P. Eggleton,et al.  Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches , 2007, Biology Letters.

[73]  J. Vermunt,et al.  Assessing Performance of Orthology Detection Strategies Applied to Eukaryotic Genomes , 2007, PloS one.

[74]  K. Yoshizawa The Zoraptera problem: evidence for Zoraptera + Embiodea from the wing base , 2007 .

[75]  J. Rust,et al.  The first fossil leaf insect: 47 million years of specialized cryptic morphology and behavior , 2007, Proceedings of the National Academy of Sciences.

[76]  P. Bork,et al.  Quantification of insect genome divergence. , 2007, Trends in genetics : TIG.

[77]  S. Harzsch,et al.  Evolution of eye development in arthropods: phylogenetic aspects. , 2006, Arthropod structure & development.

[78]  G. Weinstock,et al.  Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects. , 2006, Genome research.

[79]  H. Philippe,et al.  Large-scale sequencing and the new animal phylogeny. , 2006, Trends in ecology & evolution.

[80]  S. Carroll,et al.  Bushes in the Tree of Life , 2006, PLoS biology.

[81]  Stanislav N. Gorb,et al.  A Revised Interpretation of the Evolution of Attachment Structures in Hexapoda with Special Emphasis on Mantophasmatodea , 2006 .

[82]  M. Engel A note on the relic silverfish Tricholepidion gertschi (Zygentoma) , 2006 .

[83]  J. Mallatt,et al.  Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. , 2006, Molecular phylogenetics and evolution.

[84]  F. Frati,et al.  A review of molecular data for the phylogeny of basal hexapods , 2006 .

[85]  V. Laudet,et al.  The rapid divergence of the ecdysone receptor is a synapomorphy for Mecopterida that clarifies the Strepsiptera problem , 2006, Insect molecular biology.

[86]  R. Beutel,et al.  Endopterygote systematics – where do we stand and what is the goal (Hexapoda, Arthropoda)? , 2006 .

[87]  Alfried P Vogler,et al.  Dense taxonomic EST sampling and its applications for molecular systematics of the Coleoptera (beetles). , 2006, Molecular biology and evolution.

[88]  M. Whiting,et al.  Evidence from mitochondrial genomics on interordinal relationships in insects , 2006, Arthropod Systematics & Phylogeny.

[89]  M. Whiting,et al.  Mitochondrial genomics and the new insect order Mantophasmatodea. , 2006, Molecular phylogenetics and evolution.

[90]  S. Carroll,et al.  Animal Evolution and the Molecular Signature of Radiations Compressed in Time , 2005, Science.

[91]  R. Machida,et al.  Embryonic development of Galloisiana yuasai Asahina, with special reference to external morphology (Insecta: Grylloblattodea) , 2005, Journal of morphology.

[92]  K. Yoshizawa,et al.  Aligned 18S for Zoraptera (Insecta): phylogenetic position and molecular evolution. , 2005, Molecular phylogenetics and evolution.

[93]  R. Beutel,et al.  The phylogeny of Strepsiptera (Hexapoda) , 2005, Cladistics : the international journal of the Willi Hennig Society.

[94]  S. Barker,et al.  Multiple origins of parasitism in lice: phylogenetic analysis of SSU rDNA indicates that the Phthiraptera and Psocoptera are not monophyletic , 2005, Parasitology Research.

[95]  F. Haas,et al.  Phylogeny of earwigs (Insecta: Dermaptera) based on molecular and morphological evidence: reconsidering the classification of Dermaptera , 2005 .

[96]  J. Mallatt,et al.  The phylogenetic positions of three Basal-hexapod groups (protura, diplura, and collembola) based on ribosomal RNA gene sequences. , 2005, Molecular biology and evolution.

[97]  M. Whiting,et al.  Mantophasmatodea and phylogeny of the lower neopterous insects , 2005 .

[98]  R. Beutel,et al.  Cephalic anatomy of Zorotypus hubbardi (Hexapoda: Zoraptera): new evidence for a relationship with Acercaria , 2005, Zoomorphology.

[99]  S. Edwards,et al.  Phylogenetics of modern birds in the era of genomics , 2005, Proceedings of the Royal Society B: Biological Sciences.

[100]  D. Grimaldi,et al.  Evolution of the insects , 2005 .

[101]  M. Dowton,et al.  The position of the Hymenoptera within the Holometabola as inferred from the mitochondrial genome of Perga condei (Hymenoptera: Symphyta: Pergidae). , 2005, Molecular phylogenetics and evolution.

[102]  J. Shultz,et al.  Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic , 2005, Proceedings of the Royal Society B: Biological Sciences.

[103]  Veiko Krauss,et al.  Phylogenetic mapping of intron positions: a case study of translation initiation factor eIF2gamma. , 2005, Molecular biology and evolution.

[104]  M. Bastiani,et al.  The structure of the USP/RXR of Xenos pecki indicates that Strepsiptera are not closely related to Diptera , 2005, Development Genes and Evolution.

[105]  James M. Carpenter,et al.  Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects , 2004 .

[106]  Pavel A Pevzner,et al.  Mammalian phylogenomics comes of age. , 2004, Trends in genetics : TIG.

[107]  V. Smith,et al.  Multiple origins of parasitism in lice , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[108]  E. Haring,et al.  Phylogeny of the Neuropterida: a first molecular approach , 2004 .

[109]  K. Kjer,et al.  Aligned 18S and insect phylogeny. , 2004, Systematic biology.

[110]  J. Shultz,et al.  Phylogeny of Basal Hexapod Lineages and Estimates of Divergence Times , 2004 .

[111]  J. Kukalová-Peck,et al.  Relationships among coleopteran suborders and major endoneopteran lineages: Evidence from hind wing characters , 2004 .

[112]  Martin Fanenbruck,et al.  The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[113]  M. Whiting,et al.  The problem with “the Paleoptera Problem:” sense and sensitivity , 2003, Cladistics : the international journal of the Willi Hennig Society.

[114]  C. Bandi,et al.  Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. , 2003, Molecular biology and evolution.

[115]  J. Boore,et al.  Hexapod Origins: Monophyletic or Paraphyletic? , 2003, Science.

[116]  K. Klass,et al.  Phylogeny of the Dictyoptera Re-examined (Insecta) , 2003 .

[117]  Jian Wang,et al.  The Genome Sequence of the Malaria Mosquito Anopheles gambiae , 2002, Science.

[118]  T. Pape,et al.  The Palaeoptera Problem: Basal Pterygote Phylogeny Inferred from 18S and 28S rDNA Sequences , 2002, Cladistics : the international journal of the Willi Hennig Society.

[119]  T. Pape,et al.  The Palaeoptera Problem: Basal Pterygote Phylogeny Inferred from 18S and 28S rDNA Sequences , 2002 .

[120]  K. Klass,et al.  Mantophasmatodea: A New Insect Order with Extant Members in the Afrotropics , 2002, Science.

[121]  M. Whiting Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera , 2002 .

[122]  Stanislav N. Gorb,et al.  Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny , 2001 .

[123]  Gonzalo Giribet,et al.  Arthropod phylogeny based on eight molecular loci and morphology , 2001, Nature.

[124]  James M. Carpenter,et al.  The Phylogeny of the Extant Hexapod Orders , 2001, Cladistics : the international journal of the Willi Hennig Society.

[125]  K. Yoshizawa,et al.  Phylogenetic analysis of paraneopteran orders (Insecta: Neoptera) based on forewing base structure, with comments on monophyly of Auchenorrhyncha (Hemiptera) , 2001 .

[126]  U. Aspöck,et al.  Cladistic analysis of Neuroptera and their systematic position within Neuropterida (Insecta: Holometabola: Neuropterida: Neuroptera) , 2001 .

[127]  O. Kraus Myriapoda and the ancestry of the hexapoda , 2001 .

[128]  K. Klass,et al.  The ground plan and affinities of hexapods : Recent progress and open problems , 2001 .

[129]  P. Holland,et al.  Rare genomic changes as a tool for phylogenetics. , 2000, Trends in ecology & evolution.

[130]  H. Noda,et al.  Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches , 2000, Current Biology.

[131]  M. Krasnow,et al.  The Drosophila genome sequence: implications for biology and medicine. , 2000, Science.

[132]  D. Grimaldi,et al.  A Winged Zorotypus in Miocene Amber from the Dominician Republic (Zoraptera: Zorotypidae), with Discussion on Relationships of and within the Order , 2000 .

[133]  A. Staniczek The mandible of silverfish (Insecta: Zygentoma) and mayflies (Ephemeroptera): its morphology and phylogenetic significance. , 2000 .

[134]  P. Holland,et al.  Intron insertion as a phylogenetic character: the engrailed homeobox of Strepsiptera does not indicate affinity with Diptera , 1999, Insect molecular biology.

[135]  J. Huelsenbeck Systematic bias in phylogenetic analysis: is the Strepsiptera problem solved? , 1998, Systematic biology.

[136]  W C Wheeler,et al.  The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. , 1997, Systematic biology.

[137]  W. Wheeler,et al.  Insect homeotic transformation , 1994, Nature.

[138]  N. P. Kristensen Phylogeny of Insect Orders , 1981 .

[139]  W. Hennig,et al.  Die Stammesgeschichte der Insekten , 1970 .

[140]  R. A. Crowson The Phylogeny of Coleoptera , 1960 .