Globalizing Local Neighborhood for Locally Linear Embedding

Hessian locally linear embedding (HLLE) has good representational capacity and high computational efficiency, but it still fails to nicely deal with the sparsely sampled or noise contaminated datasets, where the local neighborhood structure is critically distorted. To solve this problem, this paper proposes a new approach that takes the general conceptual framework of HLLE so as to guarantee its correctness in the setting of local isometry, and then employs the geodesic distance instead of Euclidean distance to determine the local neighborhood so as to give the global representation to the local data. This approach can be regarded as the integration of both local approaches and global approaches, so that it have the better performance and stability. The conducted experiments on both synthetic and real datasets have validated the proposed approach.

[1]  Zhi-Hua Zhou,et al.  Unified Locally Linear Embedding and Linear Discriminant Analysis Algorithm (ULLELDA) for Face Recognition , 2004, SINOBIOMETRICS.

[2]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[3]  Amitabha Mukerjee,et al.  Non-linear Dimensionality Reduction by Locally Linear Isomaps , 2004, ICONIP.

[4]  Houkuan Huang,et al.  Selection of the Optimal Parameter Value for the ISOMAP Algorithm , 2005, MICAI.

[5]  Li Yang Building k edge-disjoint spanning trees of minimum total length for isometric data embedding , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[7]  Dimitrios Charalampidis,et al.  A modified k-means algorithm for circular invariant clustering , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Marcel J. T. Reinders,et al.  Local Fisher embedding , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[9]  Matti Pietikäinen,et al.  Incremental locally linear embedding , 2005, Pattern Recognit..

[10]  Changshui Zhang,et al.  Exploring the structure of supervised data by Discriminant Isometric Mapping , 2005, Pattern Recognit..

[11]  Jian Xiao,et al.  Self-organized Locally Linear Embedding for Nonlinear Dimensionality Reduction , 2005, ICNC.

[12]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[14]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[15]  Joshua B. Tenenbaum,et al.  The Isomap Algorithm and Topological Stability , 2002, Science.

[16]  Dimitrios Gunopulos,et al.  Non-linear dimensionality reduction techniques for classification and visualization , 2002, KDD.

[17]  Andrew Beng Jin Teoh,et al.  Fusion of Locally Linear Embedding and Principal Component Analysis for Face Recognition (FLLEPCA) , 2005, ICAPR.

[18]  Matti Pietikäinen,et al.  Selection of the Optimal Parameter value for the Locally Linear Embedding Algorithm , 2002, FSKD.

[19]  Maja J. Mataric,et al.  A spatio-temporal extension to Isomap nonlinear dimension reduction , 2004, ICML.

[20]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[21]  Li Yang,et al.  Distance-Preserving Projection of High-Dimensional Data for Nonlinear Dimensionality Reduction , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Matti Pietikäinen,et al.  Supervised Locally Linear Embedding , 2003, ICANN.

[23]  Anil K. Jain,et al.  Incremental nonlinear dimensionality reduction by manifold learning , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Zhi-Hua Zhou,et al.  Supervised nonlinear dimensionality reduction for visualization and classification , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[25]  M. Loog,et al.  Local Fisher embedding , 2004, ICPR 2004.