Easily implementable time series forecasting techniques for resource provisioning in cloud computing

Workload predictions in cloud computing is obviously an important topic. Most of the existing publications employ various time series techniques, that might be difficult to implement. We suggest here another route, which has already been successfully used in financial engineering and photovoltaic energy. No mathematical modeling and machine learning procedures are needed. Our computer simulations via realistic data, which are quite convincing, show that a setting mixing algebraic estimation techniques and the daily seasonality behaves much better. An application to the computing resource allocation, via virtual machines, is sketched out.

[1]  Ram Krishnan,et al.  Time Series Forecasting of Cloud Data Center Workloads for Dynamic Resource Provisioning , 2015, J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl..

[2]  Philippe Merle,et al.  Elasticity in Cloud Computing: State of the Art and Research Challenges , 2018, IEEE Transactions on Services Computing.

[3]  Cédric Join,et al.  A Mathematical Proof of the Existence of Trends in Financial Time Series , 2009, ArXiv.

[4]  Cyril Voyant,et al.  Time series modeling and large scale global solar radiation forecasting from geostationary satellites data , 2014, ArXiv.

[5]  Cédric Join,et al.  Is a probabilistic modeling really useful in financial engineering? - A-t-on vraiment besoin d'un modèle probabiliste en ingénierie financière? , 2011, ArXiv.

[6]  Arun Kejariwal,et al.  A Novel Technique for Long-Term Anomaly Detection in the Cloud , 2014, HotCloud.

[7]  M. Mudelsee Climate Time Series Analysis: Classical Statistical and Bootstrap Methods , 2010 .

[8]  Kyungyong Lee,et al.  Time-Series Analysis for Price Prediction of Opportunistic Cloud Computing Resources , 2018 .

[9]  Cédric Join,et al.  Model-free control , 2013, Int. J. Control.

[10]  Kevin Lee,et al.  Empirical prediction models for adaptive resource provisioning in the cloud , 2012, Future Gener. Comput. Syst..

[11]  Emanuel Ferreira Coutinho,et al.  Elasticity in cloud computing: a survey , 2014, annals of telecommunications - annales des télécommunications.

[12]  Éric Rutten,et al.  Coordinating self-sizing and self-repair managers for multi-tier systems , 2014, Future Gener. Comput. Syst..

[13]  P. Cartier,et al.  Integration over finite sets , 1995 .

[14]  Abiola Adegboyega,et al.  Time-series models for cloud workload prediction: A comparison , 2017, 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM).

[15]  Jitendra Kumar,et al.  Workload prediction in cloud using artificial neural network and adaptive differential evolution , 2018, Future Gener. Comput. Syst..

[16]  Francisco Beltran-Carbajal,et al.  On-line parametric estimation of damped multiple frequency oscillations , 2018 .

[17]  Weizhong Yan,et al.  Toward Automatic Time-Series Forecasting Using Neural Networks , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[18]  M. Fliess,et al.  Meilleure élasticité > par commande sans modèle , 2018 .

[19]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[20]  Guy Melard,et al.  Méthodes de prévision à court terme , 1990 .

[21]  Yaman Roumani,et al.  An empirical study on predicting cloud incidents , 2019, Int. J. Inf. Manag..

[22]  Yanjun Qi,et al.  Empirical Evaluation of Workload Forecasting Techniques for Predictive Cloud Resource Scaling , 2016, 2016 IEEE 9th International Conference on Cloud Computing (CLOUD).

[23]  Ch. Aswani Kumar,et al.  Non-linear analysis of bursty workloads using dual metrics for better cloud resource management , 2019, Journal of Ambient Intelligence and Humanized Computing.

[24]  Hai Dong,et al.  Long-Term QoS-Aware Cloud Service Composition Using Multivariate Time Series Analysis , 2016, IEEE Transactions on Services Computing.

[25]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[26]  F Diener,et al.  Analyse non standard , 1989 .

[27]  Gurmeher Singh Puri,et al.  A Review on Cloud Computing , 2019, 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence).

[28]  Michel Fliess,et al.  Analyse non standard du bruit , 2006, ArXiv.

[29]  H. T. H. PIAGGIO,et al.  The Operational Calculus , 1943, Nature.

[30]  Cédric Join,et al.  On short-term traffic flow forecasting and its reliability , 2016, ArXiv.

[31]  Xiao Liu,et al.  Time-Series Pattern Based Effective Noise Generation for Privacy Protection on Cloud , 2015, IEEE Transactions on Computers.

[32]  Jinhui Huang,et al.  Resource prediction based on double exponential smoothing in cloud computing , 2012, 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet).

[33]  Cédric Join,et al.  Non-linear estimation is easy , 2007, Int. J. Model. Identif. Control..

[34]  Cédric Join,et al.  Algebraic change-point detection , 2009, Applicable Algebra in Engineering, Communication and Computing.

[35]  Alessandro Beghi,et al.  Modelling, simulation and real-time control of a laboratory tide generation system , 2019, Control Engineering Practice.

[36]  Christopher Leckie,et al.  Analysing Virtual Machine Usage in Cloud Computing , 2013, 2013 IEEE Ninth World Congress on Services.

[37]  Tewfik Sari,et al.  Non-standard analysis and representation of reality , 2008, Int. J. Control.

[38]  J. Harthong Le moiré , 1981 .

[39]  Gilles Notton,et al.  Periodic autoregressive forecasting of global solar irradiation without knowledge-based model implementation , 2018, Solar Energy.

[40]  Amy Loutfi,et al.  A review of unsupervised feature learning and deep learning for time-series modeling , 2014, Pattern Recognit. Lett..

[41]  Inderveer Chana,et al.  A resource elasticity framework for QoS-aware execution of cloud applications , 2014, Future Gener. Comput. Syst..

[42]  F. Diener,et al.  Nonstandard Analysis in Practice , 1995 .

[43]  Michel Fliess,et al.  Prediction bands for solar energy: New short-term time series forecasting techniques , 2018 .

[44]  Guoqiang Peter Zhang,et al.  Time series forecasting using a hybrid ARIMA and neural network model , 2003, Neurocomputing.

[45]  Maryam Amiri,et al.  Survey on prediction models of applications for resources provisioning in cloud , 2017, J. Netw. Comput. Appl..

[46]  Geyong Min,et al.  Time Series Anomaly Detection for Trustworthy Services in Cloud Computing Systems , 2017, IEEE Transactions on Big Data.