EigenGP: Gaussian Process Models with Adaptive Eigenfunctions

Gaussian processes (GPs) provide a nonparametric representation of functions. However, classical GP inference suffers from high computational cost for big data. In this paper, we propose a new Bayesian approach, EigenGP, that learns both basis dictionary elements--eigenfunctions of a GP prior--and prior precisions in a sparse finite model. It is well known that, among all orthogonal basis functions, eigenfunctions can provide the most compact representation. Unlike other sparse Bayesian finite models where the basis function has a fixed form, our eigenfunctions live in a reproducing kernel Hilbert space as a finite linear combination of kernel functions. We learn the dictionary elements-- eigenfunctions--and the prior precisions over these elements as well as all the other hyperparameters from data by maximizing the model marginal likelihood. We explore computational linear algebra to simplify the gradient computation significantly. Our experimental results demonstrate improved predictive performance of EigenGP over alternative sparse GP methods as well as relevance vector machines.

[1]  Michael E. Tipping,et al.  Analysis of Sparse Bayesian Learning , 2001, NIPS.

[2]  M. Opper Sparse Online Gaussian Processes , 2008 .

[3]  Carl E. Rasmussen,et al.  Sparse Spectrum Gaussian Process Regression , 2010, J. Mach. Learn. Res..

[4]  Ivor W. Tsang,et al.  Improved Nyström low-rank approximation and error analysis , 2008, ICML '08.

[5]  T. Minka Old and New Matrix Algebra Useful for Statistics , 2000 .

[6]  David Barber,et al.  Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Feng Yan,et al.  Sparse Gaussian Process Regression via L1 Penalization , 2010, ICML.

[8]  C. Anderson,et al.  Quantitative Methods for Current Environmental Issues , 2005 .

[9]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[10]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[11]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[12]  Changsong Deng,et al.  Statistics and Probability Letters , 2011 .

[13]  D. Higdon Space and Space-Time Modeling using Process Convolutions , 2002 .

[14]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[15]  Yuan Qi,et al.  Sparse-posterior Gaussian Processes for general likelihoods , 2010, UAI.

[16]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[17]  J. Meigs,et al.  WHO Technical Report , 1954, The Yale Journal of Biology and Medicine.

[18]  Amos Storkey,et al.  Advances in Neural Information Processing Systems 20 , 2007 .

[19]  Zoubin Ghahramani,et al.  Proceedings of the 24th international conference on Machine learning , 2007, ICML 2007.

[20]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[21]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[22]  Michael E. Tipping The Relevance Vector Machine , 1999, NIPS.

[23]  Thomas G. Dietterich,et al.  In Advances in Neural Information Processing Systems 12 , 1991, NIPS 1991.

[24]  Koby Crammer,et al.  Advances in Neural Information Processing Systems 14 , 2002 .

[25]  S. Sunoj,et al.  Statistics and Probability Letters , 2012 .

[26]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[27]  Johan A. K. Suykens,et al.  Subset based least squares subspace regression in RKHS , 2005, Neurocomputing.

[28]  R. Pace,et al.  Sparse spatial autoregressions , 1997 .

[29]  J. Leeuw Derivatives of Generalized Eigen Systems with Applications , 2007 .

[30]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[31]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[32]  Mark J. Schervish,et al.  Nonstationary Covariance Functions for Gaussian Process Regression , 2003, NIPS.

[33]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.