Square-root quaternion cubature Kalman filtering for spacecraft attitude estimation

Abstract A novel quaternion estimator called square-root quaternion cubature Kalman filter is proposed for spacecraft attitude estimation. The filter approach uses a gyro-based model for quaternion propagation and a reduced quaternion measurement model to substantially reduce the computational costs. The process and measurement noises of the system model exhibit the same kind of linear state-dependence. The properties of the state-dependent noises are extended and more general expressions for the covariance matrices of such state-dependent noises are developed. The new filter estimates the quaternion directly in vector space and uses a two-step projection method to maintain the quaternion normalization constraint along the estimation process. The square-root forms enjoy a consistently improved numerical stability because all the resulting covariance matrices are guaranteed to stay positive semi-definite. Extensive Monte-Carlo simulations for several typical scenarios are performed, and simulation results indicate that the proposed filter provides lower attitude estimation errors with faster convergence rate than a multiplicative extended Kalman filter, a quaternion Kalman filter, and a generalized Rodrigues parameters (GRPs)-based cubature Kalman filter for large initialization errors.

[1]  J. L. Farrell,et al.  Attitude determination by kalman filtering , 1970 .

[2]  Simo Särkkä,et al.  Continuous-time and continuous-discrete-time unscented Rauch-Tung-Striebel smoothers , 2010, Signal Process..

[3]  R. Farrenkopf Analytic Steady-State Accuracy Solutions for Two Common Spacecraft Attitude Estimators , 1978 .

[4]  I. Bar-Itzhack,et al.  Attitude Determination from Vector Observations: Quaternion Estimation , 1985, IEEE Transactions on Aerospace and Electronic Systems.

[5]  A. Chulliat,et al.  International Geomagnetic Reference Field: the eleventh generation , 2010 .

[6]  Joseph J. LaViola,et al.  On Kalman Filtering With Nonlinear Equality Constraints , 2007, IEEE Transactions on Signal Processing.

[7]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[8]  Simo Särkkä,et al.  On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems , 2007, IEEE Trans. Autom. Control..

[9]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[10]  J.L. Crassidis,et al.  Sigma-point Kalman filtering for integrated GPS and inertial navigation , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[11]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[12]  Simon Haykin,et al.  Cubature Kalman Filtering for Continuous-Discrete Systems: Theory and Simulations , 2010, IEEE Transactions on Signal Processing.

[13]  Simon Haykin,et al.  Square-Root Quadrature Kalman Filtering , 2008, IEEE Transactions on Signal Processing.

[14]  M. Shuster,et al.  Three-axis attitude determination from vector observations , 1981 .

[15]  M. Shuster A survey of attitude representation , 1993 .

[16]  M. Pittelkau Rotation Vector in Attitude Estimation , 2003 .

[17]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[18]  Son-Goo Kim,et al.  Kalman filtering for relative spacecraft attitude and position estimation , 2005 .

[19]  William Rowan Hamilton,et al.  Elements of Quaternions , 1969 .

[20]  Daniel Choukroun Novel Results on Quaternion Modelling and Estimation from Vector Observations , 2009 .

[21]  M. Psiaki Backward-Smoothing Extended Kalman Filter , 2005 .

[22]  W. Blair,et al.  Use of a kinematic constraint in tracking constant speed, maneuvering targets , 1993, IEEE Trans. Autom. Control..

[23]  F. Markley,et al.  Unscented Filtering for Spacecraft Attitude Estimation , 2003 .

[24]  Yang Cheng,et al.  Sparse Gauss-Hermite Quadrature Filter with Application to Spacecraft Attitude Estimation , 2011 .

[25]  Daniele Mortari,et al.  Norm-Constrained Kalman Filtering , 2009 .

[26]  Yuanxin Wu,et al.  A Numerical-Integration Perspective on Gaussian Filters , 2006, IEEE Transactions on Signal Processing.

[27]  Yaakov Oshman,et al.  Minimal-Parameter Attitude Matrix Estimation from Vector Observations , 1998 .

[28]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[29]  I. Bar-Itzhack,et al.  Novel quaternion Kalman filter , 2002, IEEE Transactions on Aerospace and Electronic Systems.

[30]  Pedro Elosegui,et al.  New State Update Equation for the Unscented Kalman Filter , 2008 .

[31]  D. Simon,et al.  Kalman filtering with state equality constraints , 2002 .

[32]  Simon J. Julier,et al.  The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[33]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..