THE METHOD OF HYPERGRAPH CONTAINERS

In this survey we describe a recently-developed technique for bounding the number (and controlling the typical structure) of finite objects with forbidden substructures. This technique exploits a subtle clustering phenomenon exhibited by the independent sets of uniform hypergraphs whose edges are sufficiently evenly distributed; more precisely, it provides a relatively small family of 'containers' for the independent sets, each of which contains few edges. We attempt to convey to the reader a general high-level overview of the method, focusing on a small number of illustrative applications in areas such as extremal graph theory, Ramsey theory, additive combinatorics, and discrete geometry, and avoiding technical details as much as possible.

[1]  D. Conlon Combinatorial theorems relative to a random set , 2014, 1404.3324.

[2]  Stefanie Gerke,et al.  A probabilistic counting lemma for complete graphs , 2007, Random Struct. Algorithms.

[3]  Jozsef Balogh,et al.  On the number of points in general position in the plane , 2017, Discrete Analysis.

[4]  Ben Green,et al.  Counting sets with small sumset and applications , 2013, Comb..

[5]  Alex D. Scott,et al.  Szemerédi's Regularity Lemma for Matrices and Sparse Graphs , 2010, Combinatorics, Probability and Computing.

[6]  N. Alon Restricted colorings of graphs , 1993 .

[7]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[8]  Miklós Simonovits,et al.  The typical structure of graphs without given excluded subgraphs , 2009, Random Struct. Algorithms.

[9]  Andrew Thomason,et al.  Online containers for hypergraphs, with applications to linear equations , 2016, J. Comb. Theory, Ser. B.

[10]  Gyula O. H. Katona,et al.  On the Number of Databases and Closure Operations , 1991, Theor. Comput. Sci..

[11]  József Balogh,et al.  The number of maximal sum-free subsets of integers , 2014 .

[12]  Ben Green,et al.  Counting sumsets and sum-free sets modulo a prime , 2004 .

[13]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[14]  Andrew Thomason,et al.  Simple Containers for Simple Hypergraphs , 2014, Combinatorics, Probability and Computing.

[15]  Daniel J. Kleitman Extremal Properties of Collections of Subsets Containing No Two Sets and Their Union , 1976, J. Comb. Theory, Ser. A.

[16]  Robert Morris,et al.  Maximum-size antichains in random set-systems , 2016, Random Struct. Algorithms.

[17]  Yoshiharu Kohayakawa,et al.  An Extremal Problem For Random Graphs And The Number Of Graphs With Large Even-Girth , 1998, Comb..

[18]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[19]  Zoltán Füredi,et al.  A proof of the stability of extremal graphs, Simonovits' stability from Szemerédi's regularity , 2015, J. Comb. Theory, Ser. B.

[20]  J'ozsef Balogh,et al.  The number of the maximal triangle‐free graphs , 2014, 1409.8123.

[21]  N. Alon Independent sets in regular graphs and sum-free subsets of finite groups , 1991 .

[22]  Andrew Thomason,et al.  List Colourings of Regular Hypergraphs , 2012, Comb. Probab. Comput..

[23]  Alexander A. Sapozhenko Systems of Containers and Enumeration Problems , 2005, SAGA.

[24]  Vojtech Rödl,et al.  On Uncrowded Hypergraphs , 1995, Random Struct. Algorithms.

[25]  W. Samotij,et al.  Supersaturated sparse graphs and hypergraphs , 2017, 1710.04517.

[26]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[27]  D. Saxton,et al.  An asymmetric container lemma and the structure of graphs with no induced $4$-cycle , 2018, Journal of the European Mathematical Society.

[28]  Alexander A. Sapozhenko The Cameron-Erdös conjecture , 2008, Discret. Math..

[29]  V. Rödl,et al.  On the Number of Bh-Sets , 2015, Combinatorics, Probability and Computing.

[30]  A. A. SAPOZHENKO On the number of independent sets in expanders , 2001 .

[31]  M. Schacht Extremal results for random discrete structures , 2016, 1603.00894.

[32]  Miklós Simonovits,et al.  The number of graphs without forbidden subgraphs , 2004, J. Comb. Theory B.

[33]  Wojciech Samotij,et al.  A refinement of the Cameron–Erdős conjecture , 2012, 1202.5200.

[34]  W. T. Gowers,et al.  On the KŁR conjecture in random graphs , 2013, 1305.2516.

[35]  Dhruv Mubayi,et al.  DISCRETE METRIC SPACES: STRUCTURE, ENUMERATION, AND 0-1 LAWS , 2015, The Journal of Symbolic Logic.

[36]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[37]  Wojciech Samotij,et al.  Counting independent sets in graphs , 2014, Eur. J. Comb..

[38]  W. T. Gowers,et al.  Erdős and Arithmetic Progressions , 2013 .

[39]  V. Rödl,et al.  Arithmetic progressions of length three in subsets of a random set , 1996 .

[40]  Angelika Steger,et al.  A Short Proof of the Random Ramsey Theorem , 2014, Combinatorics, Probability and Computing.

[41]  J. Balogh,et al.  THE TYPICAL STRUCTURE OF MAXIMAL TRIANGLE-FREE GRAPHS , 2015, Forum of Mathematics, Sigma.

[42]  Béla Bollobás,et al.  Hereditary and Monotone Properties of Graphs , 2013, The Mathematics of Paul Erdős II.

[43]  Yoshiharu Kohayakawa,et al.  Turán's Extremal Problem in Random Graphs: Forbidding Even Cycles , 1995, J. Comb. Theory, Ser. B.

[44]  alcun K. grafo ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .

[45]  Noga Alon,et al.  A Non-linear Lower Bound for Planar Epsilon-nets , 2010, Discrete & Computational Geometry.

[46]  V. Rödl,et al.  Threshold functions for Ramsey properties , 1995 .

[47]  Mathias Schacht,et al.  Sharp thresholds for Ramsey properties of strictly balanced nearly bipartite graphs , 2016, Random Struct. Algorithms.

[48]  Victor Falgas-Ravry,et al.  Multicolour containers and the entropy of decorated graph limits , 2016, 1607.08152.

[49]  D. Saxton,et al.  Hypergraph containers , 2012, 1204.6595.

[50]  Vojtech Rödl,et al.  Random Graphs with Monochromatic Triangles in Every Edge Coloring , 1994, Random Struct. Algorithms.

[51]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[52]  Vojtech Rödl,et al.  An exponential-type upper bound for Folkman numbers , 2016, Comb..

[53]  Adam Zsolt Wagner,et al.  On the number of union-free families , 2016, 1601.03659.

[54]  David Saxton,et al.  The number of $C_{2l}$-free graphs , 2013, 1309.2927.

[55]  D. J. Kleitman,et al.  The Asymptotic Number of Lattices , 1980 .

[56]  Domingos Dellamonica,et al.  The number of Bh ‐sets of a given cardinality , 2018 .

[57]  Vojtech Rödl,et al.  Ramsey properties of random discrete structures , 2010, Random Struct. Algorithms.

[58]  B. Bollobás,et al.  Projections of Bodies and Hereditary Properties of Hypergraphs , 1995 .

[59]  Wojciech Samotij,et al.  Random sum-free subsets of abelian groups , 2011, 1103.2041.

[60]  Paul Erdös,et al.  Some Old and New Problems in Combinatorial Geometry , 1984 .

[61]  D. Kleitman,et al.  On Dedekind’s problem: The number of monotone Boolean functions , 1969 .

[62]  Angelika Steger,et al.  On the Number of Graphs Without Large Cliques , 2013, SIAM J. Discret. Math..

[63]  Maryam Sharifzadeh,et al.  Sharp bound on the number of maximal sum-free subsets of integers , 2018, Journal of the European Mathematical Society.

[64]  M. Schacht,et al.  A sharp threshold for van der Waerden's theorem in random subsets , 2016 .

[66]  Wojciech Samotij,et al.  What does a typical metric space look like? , 2021 .

[67]  Y. Kohayakawa,et al.  Turán's extremal problem in random graphs: Forbidding odd cycles , 1996, Comb..

[68]  Wojciech Samotij,et al.  The typical structure of sparse $K_{r+1}$-free graphs , 2013, 1307.5967.

[69]  Zoltán Füredi Maximal Independent Subsets in Steiner Systems and in Planar Sets , 1991, SIAM J. Discret. Math..

[70]  Richard Mollin,et al.  On the Number of Sets of Integers With Various Properties , 1990 .

[71]  Domingos Dellamonica,et al.  The number of B3-sets of a given cardinality , 2016, J. Comb. Theory, Ser. A.

[72]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[73]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[74]  Andrzej Ruciński,et al.  Rado Partition Theorem for Random Subsets of Integers , 1997 .

[75]  Vojtech Rödl,et al.  Large triangle-free subgraphs in graphs withoutK4 , 1986, Graphs Comb..

[77]  Maryam Sharifzadeh,et al.  The number of subsets of integers with no $k$-term arithmetic progression , 2016, 1605.03172.

[78]  Vojtech Rödl,et al.  A sharp threshold for random graphs with a monochromatic triangle in every edge coloring , 2006, Memoirs of the American Mathematical Society.

[79]  H. Furstenberg,et al.  A density version of the Hales-Jewett theorem , 1991 .

[80]  Jeff Kahn,et al.  Mantel's theorem for random graphs , 2012, Random Struct. Algorithms.

[81]  Maryam Sharifzadeh,et al.  The typical structure of graphs with no large cliques , 2014, Comb..

[82]  Noga Alon,et al.  Degrees and choice numbers , 2000, Random Struct. Algorithms.

[83]  Александр Антонович Сапоженко,et al.  О числе независимых множеств в расширителях@@@On the number of independent sets in extenders , 2001 .

[84]  Yoshiharu Kohayakawa,et al.  The number of Sidon sets and the maximum size of Sidon sets contained in a sparse random set of integers , 2015, Random Struct. Algorithms.

[85]  Tomasz Luczak On triangle-free random graphs , 2000, Random Struct. Algorithms.

[86]  József Balogh,et al.  Applications of graph containers in the Boolean lattice , 2016, Random Struct. Algorithms.

[87]  József Balogh,et al.  A random version of Sperner's theorem , 2014, J. Comb. Theory, Ser. A.

[88]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[89]  D. Achlioptas,et al.  A Sharp Threshold for k-Colorability , 1999, Random Struct. Algorithms.

[90]  P. Erdos,et al.  SOME RECENT RESULTS ON EXTREMAL PROBLEMS IN GRAPH THEORY (Results) , 2002 .

[91]  Wojciech Samotij,et al.  The number of Ks,t‐free graphs , 2011, J. Lond. Math. Soc..

[92]  Deryk Osthus,et al.  For Which Densities are Random Triangle-Free Graphs Almost Surely Bipartite? , 2003, Comb..

[93]  Vojtech Rödl,et al.  On Schur Properties of Random Subsets of Integers , 1996 .

[94]  Yi Zhao,et al.  On the structure of oriented graphs and digraphs with forbidden tournaments or cycles , 2014, J. Comb. Theory, Ser. B.

[95]  Wojciech Samotij,et al.  The number of Km,m-free graphs , 2011, Comb..

[96]  Wojciech Samotij,et al.  Counting sum-free sets in abelian groups , 2012, 1201.6654.

[97]  Yoshiharu Kohayakawa,et al.  OnK4-free subgraphs of random graphs , 1997, Comb..

[98]  Alexandr V. Kostochka,et al.  On independent sets in hypergraphs , 2011, Random Struct. Algorithms.

[99]  Mathias Schacht,et al.  Extremal Results in Random Graphs , 2013, 1302.2248.

[100]  Bobby DeMarco,et al.  Turán's Theorem for random graphs , 2015 .

[101]  Daniel J. Kleitman,et al.  On the number of graphs without 4-cycles , 1982, Discret. Math..

[102]  T. Lu ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .

[103]  János Komlós,et al.  Extremal Uncrowded Hypergraphs , 1982, J. Comb. Theory, Ser. A.

[104]  A. A. Sapozhenko The Cameron-Erd˝ os conjecture , 2008 .