High-speed BiCMOS technology with a buried twin well structure

A buried twin well and polysilicon emitter structure is developed for high-speed BiCMOS VLSI's. A bipolar transistor of high cutoff frequency (fT= 4 GHz) and small size (500 µm2) has been fabricated on the same chip with a standard 2-µm CMOS, without degrading the device characteristics of the MOSFET. Latchup immunity is improved due to the low well resistance of the buried layer. The well triggering current is a 0.5-1.0 order of magnitude higher than that of a standard n-well CMOS. To evaluate the utility of this technology, a 15-stage ring oscillator of the 2NAND BiCMOS gate is fabricated. The gate has a 0.71-ns propagation delay time and 0.25-mW power dissipation at 0.85-pF loading capacitance and 4-MHz operation. Drive ability is 0.24 ns/pF, which is 2.5 times larger than that of the equal-area CMOS gate.

[1]  F. Walczyk,et al.  A merged CMOS/bipolar VLSI process , 1983, 1983 International Electron Devices Meeting.

[2]  T. Ikeda,et al.  High speed BiCMOS VLSI technology with buried twin well structure , 1985, 1985 International Electron Devices Meeting.