The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments

This paper presents the theory, design principles, implementation and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system. In addition, this document presents the rationale, design and results of psychophysical experiments that were conducted to address some key issues that arose during PicHunter's development. The PicHunter project makes four primary contributions to research on CBIR. First, PicHunter represents a simple instance of a general Bayesian framework which we describe for using relevance feedback to direct a search. With an explicit model of what users would do, given the target image they want, PicHunter uses Bayes's rule to predict the target they want, given their actions. This is done via a probability distribution over possible image targets, rather than by refining a query. Second, an entropy-minimizing display algorithm is described that attempts to maximize the information obtained from a user at each iteration of the search. Third, PicHunter makes use of hidden annotation rather than a possibly inaccurate/inconsistent annotation structure that the user must learn and make queries in. Finally, PicHunter introduces two experimental paradigms to quantitatively evaluate the performance of the system, and psychophysical experiments are presented that support the theoretical claims.

[1]  Toshikazu Kato,et al.  Learning of personal visual impression for image database systems , 1993, Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR '93).

[2]  D. Forsyth,et al.  Searching for Digital Pictures , 1997 .

[3]  G. Healey,et al.  Global color constancy: recognition of objects by use of illumination-invariant properties of color distributions , 1994 .

[4]  Peter Stanchev,et al.  Content-Based Image Retrieval Systems , 2001 .

[5]  B. S. Manjunath,et al.  Texture features and learning similarity , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Markus A. Stricker,et al.  Color indexing with weak spatial constraints , 1996, Electronic Imaging.

[7]  Fang Liu,et al.  A new Wold ordering for image similarity , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[8]  Marc Davis,et al.  Media Streams: an iconic visual language for video representation , 1995 .

[9]  Peter N. Yianilos,et al.  Data structures and algorithms for nearest neighbor search in general metric spaces , 1993, SODA '93.

[10]  Michael J. Swain,et al.  WebSeer: An Image Search Engine for the World Wide Web , 1996 .

[11]  Tat-Seng Chua,et al.  A concept-based image retrieval system , 1994, 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences.

[12]  Michael J. Swain,et al.  Indexing via color histograms , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[13]  Ramin Zabih,et al.  Comparing images using color coherence vectors , 1997, MULTIMEDIA '96.

[14]  Reiner Eschbach,et al.  Annotation of natural scenes using adaptive color segmentaion , 1995, Electronic Imaging.

[15]  Charles A. Bouman,et al.  Perceptual image similarity experiments , 1998, Electronic Imaging.

[16]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Thomas S. Huang,et al.  Content-based image retrieval with relevance feedback in MARS , 1997, Proceedings of International Conference on Image Processing.

[18]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[19]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[20]  IJsbrand Jan Aalbersberg,et al.  Incremental relevance feedback , 1992, SIGIR '92.

[21]  Shih-Fu Chang,et al.  Visually Searching the Web for Content , 1997, IEEE Multim..

[22]  Joel H. Spencer,et al.  Coping with Errors in Binary Search Procedures , 1980, J. Comput. Syst. Sci..

[23]  M. Oda Context dependency effect in the formation of image concepts and its application , 1991, Conference Proceedings 1991 IEEE International Conference on Systems, Man, and Cybernetics.

[24]  Ingemar J. Cox,et al.  Target testing and the PicHunter Bayesian multimedia retrieval system , 1996, Proceedings of the Third Forum on Research and Technology Advances in Digital Libraries,.

[25]  G. Yihong,et al.  An image database system with fast image indexing capability based on color histograms , 1994, Proceedings of TENCON'94 - 1994 IEEE Region 10's 9th Annual International Conference on: 'Frontiers of Computer Technology'.

[26]  Qi Tian,et al.  Digital video analysis and recognition for content-based access , 1995, CSUR.

[27]  Toshikazu Kato,et al.  Query by Visual Example - Content based Image Retrieval , 1992, EDBT.

[28]  Ingemar J. Cox,et al.  PicHunter: Bayesian relevance feedback for image retrieval , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[29]  A. Murat Tekalp,et al.  Shape similarity matching for query-by-example , 1998, Pattern Recognit..

[30]  Martial Hebert,et al.  Object Representation in Computer Vision , 1994, Lecture Notes in Computer Science.

[31]  B. John Oommen,et al.  Fast Learning Automaton-Based Image Examination and Retrieval , 1993, Comput. J..

[32]  Alvy Ray Smith,et al.  Color gamut transform pairs , 1978, SIGGRAPH.

[33]  Marc Davis,et al.  Media Streams: an iconic visual language for video annotation , 1993, Proceedings 1993 IEEE Symposium on Visual Languages.

[34]  T. John Stonham,et al.  Content-based image retrieval using color tuple histograms , 1996, Electronic Imaging.

[35]  Alberto Del Bimbo,et al.  Visual image retrieval by elastic deformation of object sketches , 1994, Proceedings of 1994 IEEE Symposium on Visual Languages.

[36]  Olga Veksler,et al.  Disparity component matching for visual correspondence , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Patrick M. Kelly,et al.  CANDID: comparison algorithm for navigating digital image databases , 1994, Seventh International Working Conference on Scientific and Statistical Database Management.

[38]  A. Murat Tekalp,et al.  Content-based access to video objects: Temporal Segmentation, visual summarization, and feature extraction , 1998, Signal Process..

[39]  Toshikazu Kato,et al.  Cognitive view mechanism for multimedia database system , 1991, [1991] Proceedings. First International Workshop on Interoperability in Multidatabase Systems.

[40]  B. S. Manjunath,et al.  Dimensionality reduction using multi-dimensional scaling for content-based retrieval , 1997, Proceedings of International Conference on Image Processing.

[41]  Yihong Gong,et al.  Image retrieval based on color features: an evaluation study , 1995, Other Conferences.

[42]  M.L. Miller,et al.  Hidden annotation in content based image retrieval , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[43]  Ingemar J. Cox,et al.  An optimized interaction strategy for Bayesian relevance feedback , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[44]  Shih-Fu Chang,et al.  Tools and techniques for color image retrieval , 1996, Electronic Imaging.

[45]  Donna K. Harman,et al.  Relevance feedback revisited , 1992, SIGIR '92.

[46]  Thomas S. Huang,et al.  Relevance feedback techniques in interactive content-based image retrieval , 1997, Electronic Imaging.

[47]  A. Ravishankar Rao,et al.  Towards a texture naming system: Identifying relevant dimensions of texture , 1993, Vision Research.

[48]  Martial Hebert,et al.  Object Representation in Computer Vision II , 1996, Lecture Notes in Computer Science.

[49]  Masahito Hirakawa,et al.  An image database system facilitating icon-driven spatial information definition and retrieval , 1991, Proceedings 1991 IEEE Workshop on Visual Languages.

[50]  Suh-Yin Lee,et al.  Retrieval of similar pictures on pictorial databases , 1991, Pattern Recognit..

[51]  Andrzej PELC,et al.  Searching with Known Error Probability , 1989, Theor. Comput. Sci..

[52]  Michael J. Swain,et al.  The capacity of color histogram indexing , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[53]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[54]  J. S. Hunter,et al.  Statistics for experimenters : an introduction to design, data analysis, and model building , 1979 .

[55]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[56]  C. H. C. Leung,et al.  Content-based retrieval in multimedia databases , 1994, COMG.

[57]  William A. Gale,et al.  A sequential algorithm for training text classifiers , 1994, SIGIR '94.

[58]  B. S. Manjunath,et al.  A Texture Thesaurus for Browsing Large Aerial Photographs , 1998, J. Am. Soc. Inf. Sci..

[59]  Frederick Jelinek,et al.  Basic Methods of Probabilistic Context Free Grammars , 1992 .

[60]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Taylor L. Booth,et al.  Applying Probability Measures to Abstract Languages , 1973, IEEE Transactions on Computers.

[62]  Tom Minka,et al.  Interactive learning with a "society of models" , 1997, Pattern Recognit..

[63]  Eric Saund,et al.  A Multiple Cause Mixture Model for Unsupervised Learning , 1995, Neural Computation.

[64]  Chung-Sheng Li,et al.  Image matching by means of intensity and texture matching in the Fourier domain , 1996, Electronic Imaging.

[65]  Steven L. Salzberg,et al.  On growing better decision trees from data , 1996 .

[66]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Multimedia Systems.

[67]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[68]  W. Bruce Croft,et al.  Relevance feedback and inference networks , 1993, SIGIR.

[69]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[70]  James C. French,et al.  Indexing multispectral images for content-based retrieval , 1995, Other Conferences.

[71]  Ramin Zabih,et al.  Histogram refinement for content-based image retrieval , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[72]  Ingemar J. Cox,et al.  Psychophysical studies of the performance of an image database retrieval system , 1998, Electronic Imaging.

[73]  Stephen W. Smoliar,et al.  Video parsing, retrieval and browsing: an integrated and content-based solution , 1997, MULTIMEDIA '95.

[74]  W. Bruce Croft,et al.  A Comparison of Text Retrieval Models , 1992, Comput. J..

[75]  Michael Stonebraker,et al.  Chabot: Retrieval from a Relational Database of Images , 1995, Computer.