Handbook of Color Psychology: Fundamentals of color vision I: color processing in the eye

[1]  Brian P Schmidt,et al.  Neurobiological hypothesis of color appearance and hue perception. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  L. Chalupa,et al.  The new visual neurosciences , 2014 .

[3]  Joel Pokorny,et al.  Spectral sensitivities of the human cones , 2013 .

[4]  Fred Rieke,et al.  Origin and Impact of Phototransduction Noise in Primate Cone Photoreceptors , 2013, Nature Neuroscience.

[5]  Wei Li,et al.  Processing of S-cone signals in the inner plexiform layer of the mammalian retina , 2013, Visual Neuroscience.

[6]  Y. Xiao,et al.  Processing of the S-cone signals in the early visual cortex of primates , 2013, Visual Neuroscience.

[7]  D. Dacey,et al.  Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina , 2013, Visual Neuroscience.

[8]  Karl R Gegenfurtner,et al.  Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space. , 2013, Journal of vision.

[9]  J. Rabin The Retina: An Approachable Part of the Brain , 2013 .

[10]  B. Wandell,et al.  Human trichromacy revisited , 2012, Proceedings of the National Academy of Sciences.

[11]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[12]  Annette E. Allen,et al.  Melanopsin-Based Brightness Discrimination in Mice and Humans , 2012, Current Biology.

[13]  Shansup Chen,et al.  A color coding amacrine cell may provide a “Blue–Off” signal in a mammalian retina , 2012, Nature Neuroscience.

[14]  A. Sher,et al.  A non-canonical pathway for mammalian blue-green color vision , 2012, Nature Neuroscience.

[15]  S. Shevell,et al.  Chromatic and wavefront aberrations: L-, M- and S-cone stimulation with typical and extreme retinal image quality , 2011, Vision Research.

[16]  Ayan Chakrabarti,et al.  Statistics of real-world hyperspectral images , 2011, CVPR 2011.

[17]  Austin Roorda,et al.  Adaptive optics for studying visual function: a comprehensive review. , 2011, Journal of vision.

[18]  Joseph J Atick,et al.  Could information theory provide an ecological theory of sensory processing? , 2011, Network.

[19]  A. Stockman,et al.  A luminous efficiency function, VD65* (λ), for daylight adaptation: A correction , 2011 .

[20]  Farran Briggs,et al.  Corticogeniculate feedback and visual processing in the primate , 2011, The Journal of physiology.

[21]  Brian A. Wandell,et al.  The Beginnings of Visual Perception: The Retinal Image and its Initial Encoding. Appendix: Fourier Transforms and Shift‐Invariant Linear Operators , 2011 .

[22]  Bevil R. Conway,et al.  Advances in Color Science: From Retina to Behavior , 2010, The Journal of Neuroscience.

[23]  Jiankang Zhou,et al.  Hyperspectral image data compression based on DSP , 2010, SPIE/COS Photonics Asia.

[24]  K. Yau,et al.  Intrinsically photosensitive retinal ganglion cells. , 2010, Physiological reviews.

[25]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[26]  Isaac Sir Newton,et al.  Opticks, or a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light: Also Two Treatises of the Species and Magnitude of Curvilinear Figures , 2010 .

[27]  J. L. Schnapf,et al.  Blue-Yellow Opponency in Primate S Cone Photoreceptors , 2010, The Journal of Neuroscience.

[28]  Rhea T. Eskew,et al.  Higher order color mechanisms: A critical review , 2009, Vision Research.

[29]  E. Callaway,et al.  Parallel processing strategies of the primate visual system , 2009, Nature Reviews Neuroscience.

[30]  P. Sterling,et al.  Physiology and Morphology of Color-Opponent Ganglion Cells in a Retina Expressing a Dual Gradient of S and M Opsins , 2009, The Journal of Neuroscience.

[31]  Kaveri Rajaraman Intrinsically photosensitive ganglion cells of the tiger salamander retina , 2009 .

[32]  Paul R. Martin,et al.  Retinal ganglion cell inputs to the koniocellular pathway , 2008, The Journal of comparative neurology.

[33]  P. Lennie,et al.  Functional Asymmetries in Visual Pathways Carrying S-Cone Signals in Macaque , 2008, The Journal of Neuroscience.

[34]  P. Lennie,et al.  Habituation Reveals Fundamental Chromatic Mechanisms in Striate Cortex of Macaque , 2008, The Journal of Neuroscience.

[35]  R. Eskew Chromatic Detection and Discrimination , 2008 .

[36]  M. Moseley,et al.  Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina , 2007, Current Biology.

[37]  G D Field,et al.  Information processing in the primate retina: circuitry and coding. , 2007, Annual review of neuroscience.

[38]  P. Lennie,et al.  The machinery of colour vision , 2007, Nature Reviews Neuroscience.

[39]  Paul R. Martin,et al.  Geniculocortical relay of blue-off signals in the primate visual system , 2006, Proceedings of the National Academy of Sciences.

[40]  K. Mullen,et al.  Cone weights for the two cone-opponent systems in peripheral vision and asymmetries of cone contrast sensitivity , 2006, Vision Research.

[41]  A. Stockman,et al.  Human cone light adaptation: from behavioral measurements to molecular mechanisms. , 2006, Journal of vision.

[42]  Paul R. Martin,et al.  Random Wiring in the Midget Pathway of Primate Retina , 2006, The Journal of Neuroscience.

[43]  Peter Lennie,et al.  Coding of color and form in the geniculostriate visual pathway (invited review). , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[44]  K. Mullen,et al.  Does L/M Cone Opponency Disappear in Human Periphery? , 2005, Perception.

[45]  U. Grünert,et al.  S‐cones do not contribute to the OFF‐midget pathway in the retina of the marmoset, Callithrix jacchus , 2005, The European journal of neuroscience.

[46]  Paul R. Martin,et al.  Chromatic Organization of Ganglion Cell Receptive Fields in the Peripheral Retina , 2005, The Journal of Neuroscience.

[47]  S. Deeb,et al.  The molecular basis of variation in human color vision , 2005, Clinical genetics.

[48]  J. Pokorny,et al.  Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN , 2005, Nature.

[49]  David Williams,et al.  Organization of the Human Trichromatic Cone Mosaic , 2003, The Journal of Neuroscience.

[50]  J. Verweij,et al.  L and M Cone Contributions to the Midget and Parasol Ganglion Cell Receptive Fields of Macaque Monkey Retina , 2004, The Journal of Neuroscience.

[51]  H. Kolb,et al.  The midget pathways of the primate retina , 2004, Documenta Ophthalmologica.

[52]  L. Went,et al.  The genetics of tritan disturbances , 2004, Human Genetics.

[53]  S. Schein,et al.  Macaque Retina Contains an S-Cone OFF Midget Pathway , 2003, The Journal of Neuroscience.

[54]  Rhea T Eskew,et al.  Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity. , 2003, Visual neuroscience.

[55]  D. Dacey,et al.  Colour coding in the primate retina: diverse cell types and cone-specific circuitry , 2003, Current Opinion in Neurobiology.

[56]  D. Berson,et al.  Strange vision: ganglion cells as circadian photoreceptors , 2003, Trends in Neurosciences.

[57]  Peter Sterling,et al.  Electrical Coupling between Mammalian Cones , 2002, Current Biology.

[58]  Jay Neitz,et al.  Estimates of L:M cone ratio from ERG flicker photometry and genetics. , 2002, Journal of vision.

[59]  David Williams,et al.  Color Perception Is Mediated by a Plastic Neural Mechanism that Is Adjustable in Adults , 2002, Neuron.

[60]  Jay Neitz,et al.  What determines unique yellow, L/M cone ratio or visual experience? , 2002, Other Conferences.

[61]  K. Mullen,et al.  Differential distributions of red–green and blue–yellow cone opponency across the visual field , 2002, Visual Neuroscience.

[62]  Feng Xiao,et al.  High Dynamic Range Imaging of Natural Scenes , 2002, CIC.

[63]  D. Baylor,et al.  Activation, deactivation, and adaptation in vertebrate photoreceptor cells. , 2001, Annual review of neuroscience.

[64]  Heinz Wässle,et al.  The Cone Pedicle, a Complex Synapse in the Retina , 2000, Neuron.

[65]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[66]  T Usui,et al.  L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[67]  G. H. Jacobs,et al.  Functional consequences of the relative numbers of L and M cones. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[68]  D. Dacey Parallel pathways for spectral coding in primate retina. , 2000, Annual review of neuroscience.

[69]  Leon Lagnado,et al.  The retina , 1999, Current Biology.

[70]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[71]  P. Walraven Fundamental chromaticity diagram with physiological axes , 1999 .

[72]  A. Stockman,et al.  Cone spectral sensitivities and color matching , 1999 .

[73]  J. Nathans,et al.  Opsin genes, cone photopigments, color vision, and color blindness , 1999 .

[74]  Rhea T Eskew,et al.  Chromatic masking in the (ΔL/L, ΔM/M) plane of cone-contrast space reveals only two detection mechanisms , 1998, Vision Research.

[75]  R. Normann,et al.  Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors , 1998, Progress in Retinal and Eye Research.

[76]  R Navarro,et al.  Monochromatic aberrations and point-spread functions of the human eye across the visual field. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[77]  D. Ruderman,et al.  Statistics of cone responses to natural images: implications for visual coding , 1998 .

[78]  David J. Calkins,et al.  Microcircuitry and Mosaic of a Blue–Yellow Ganglion Cell in the Primate Retina , 1998, The Journal of Neuroscience.

[79]  B. B. Lee,et al.  Receptive fields of primate retinal ganglion cells studied with a novel technique , 1998, Visual Neuroscience.

[80]  P Lennie,et al.  Distinctive characteristics of subclasses of red–green P-cells in LGN of macaque , 1998, Visual Neuroscience.

[81]  David R. Williams,et al.  Off-axis optical quality and retinal sampling in the human eye , 1996, Vision Research.

[82]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[83]  C. Stromeyer,et al.  Human cones appear to adapt at low light levels: Measurements on the red—green detection mechanism , 1995, Vision Research.

[84]  Synapses between cones and diffuse bipolar cells of a primate retina , 1995, Journal of neurocytology.

[85]  K. Mullen,et al.  Separating colour and luminance information in the visual system. , 1995, Spatial vision.

[86]  William N. Charman Optics of the Eye , 1995 .

[87]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[88]  Richard E. Kronauer,et al.  Temporal properties of the red-green chromatic mechanism , 1994, Vision Research.

[89]  Heinz Wässle,et al.  Immunocytochemical analysis of bipolar cells in the macaque monkey retina , 1994, The Journal of comparative neurology.

[90]  David J. Calkins,et al.  M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses , 1994, Nature.

[91]  H. Kolb,et al.  Horizontal cells and cone photoreceptors in primate retina: A Golgi‐light microscopic study of spectral connectivity , 1994, The Journal of comparative neurology.

[92]  C. F. Stromeyer,et al.  Separable red-green and luminance detectors for small flashes , 1994, Vision Research.

[93]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[94]  B. Wandell,et al.  Appearance of colored patterns: pattern-color separability. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[95]  D. Brainard,et al.  Efficiency in detection of isoluminant and isochromatic interference fringes. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[96]  D. Brainard,et al.  Aberration-free measurements of the visibility of isoluminant gratings. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[97]  S. Burns,et al.  Red-green flicker photometry and nonlinearities in the flicker electroretinogram. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[98]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[99]  C. F. Stromeyer,et al.  Colour is what the eye sees best , 1993, Nature.

[100]  J. Pokorny,et al.  Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. , 1992, The Journal of physiology.

[101]  J Nathans,et al.  Absorption spectra of the hybrid pigments responsible for anomalous color vision. , 1992, Science.

[102]  Rhea T. Eskew,et al.  Peripheral chromatic sensitivity for flashes: A post-peceptoral red-green asymmetry , 1992, Vision Research.

[103]  Zhaoping Li,et al.  Understanding Retinal Color Coding from First Principles , 1992, Neural Computation.

[104]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[105]  J. Winderickx,et al.  Polymorphism in red photopigment underlies variation in colour matching , 1992, Nature.

[106]  D. Marshak,et al.  Bipolar cells specific for blue cones in the macaque retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[107]  Michael D'Zmura,et al.  Color in visual search , 1991, Vision Research.

[108]  V. Billock The relationship between simple and double opponent cells , 1991, Vision Research.

[109]  B. Boycott,et al.  Morphological Classification of Bipolar Cells of the Primate Retina , 1991, The European journal of neuroscience.

[110]  A. Milam,et al.  Distribution and morphology of human cone photoreceptors stained with anti‐blue opsin , 1991, The Journal of comparative neurology.

[111]  R. Hess,et al.  Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors. , 1991, The Journal of physiology.

[112]  G H Jacobs,et al.  Spectral tuning of pigments underlying red-green color vision. , 1991, Science.

[113]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[114]  H. Kolb,et al.  Midget ganglion cells of the parafovea of the human retina: A Study by electron microscopy and serial section reconstructions , 1991, The Journal of comparative neurology.

[115]  M. Landy,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[116]  David R. Williams,et al.  The design of chromatically opponent receptive fields , 1991 .

[117]  H. Kolb,et al.  Identification of pedicles of putative blue‐sensitive cones in the human retina , 1990, The Journal of comparative neurology.

[118]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[119]  C. M. Cicerone,et al.  The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis , 1989, Vision Research.

[120]  W. Geisler Sequential ideal-observer analysis of visual discriminations. , 1989, Psychological review.

[121]  B H Tsou,et al.  Spectral sensitivity for flicker and acuity criteria. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[122]  P. Lennie,et al.  Mechanisms of color vision. , 1988, Critical reviews in neurobiology.

[123]  D. Baylor,et al.  Spectral sensitivity of cones of the monkey Macaca fascicularis. , 1987, The Journal of physiology.

[124]  J. M. Hopkins,et al.  Cone connections of the horizontal cells of the rhesus monkey’s retina , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[125]  Angela M. Brown,et al.  Higher order color mechanisms , 1986, Vision Research.

[126]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[127]  J. Nathans,et al.  Molecular genetics of inherited variation in human color vision. , 1986, Science.

[128]  C. F. Stromeyer,et al.  Second-site adaptation in the red-green chromatic pathways , 1985, Vision Research.

[129]  C. R. Ingling,et al.  The spatiotemporal properties of the r-g X-cell channel , 1985, Vision Research.

[130]  David Williams Aliasing in human foveal vision , 1985, Vision Research.

[131]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[132]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[133]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[134]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[135]  P. Lennie Recent developments in the physiology of color vision , 1984, Trends in Neurosciences.

[136]  C. R. Ingling,et al.  The relationship between spectral sensitivity and spatial sensitivity for the primate r-g X-channel , 1983, Vision Research.

[137]  J. M. Valeton Photoreceptor light adaptation models: An evaluation , 1983, Vision Research.

[138]  W. Paulus,et al.  A new concept of retinal colour coding , 1983, Vision Research.

[139]  G. Buchsbaum,et al.  Trichromacy, opponent colours coding and optimum colour information transmission in the retina , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[140]  D. Williams,et al.  Consequences of spatial sampling by a human photoreceptor mosaic. , 1983, Science.

[141]  D. H. Kelly Spatiotemporal variation of chromatic and achromatic contrast thresholds. , 1983, Journal of the Optical Society of America.

[142]  W. Charman,et al.  Off-axis image quality in the human eye , 1981, Vision Research.

[143]  R. W. Rodieck,et al.  Retinal ganglion cell classes in the Old World monkey: morphology and central projections. , 1981, Science.

[144]  R. M. Boynton Human color vision , 1979 .

[145]  Oscar Estévez Uscanga,et al.  On the fundamental data-base of normal and dichromatic color vision , 1979 .

[146]  Miranda Mn The eye as an optical instrument , 1978 .

[147]  R. Haber,et al.  Visual Perception , 2018, Encyclopedia of Database Systems.

[148]  R. Carpenter,et al.  Movements of the Eyes , 1978 .

[149]  D H Kelly,et al.  Two-band model of heterochromatic flicker. , 1977, Journal of the Optical Society of America.

[150]  D. Krantz Color measurement and color theory: II. Opponent-colors theory , 1975 .

[151]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[152]  O. Estévez,et al.  A spectral compensation method for determining the flicker characteristics of the human colour mechanisms. , 1974, Vision research.

[153]  J. L. Brown Visual Sensitivity , 1974, Annual review of psychology.

[154]  C. R. Ingling,et al.  Retinal receptive fields: correlations between psychophysics and electrophysiology. , 1973, Vision research.

[155]  R. M. Boynton,et al.  Comparison of four methods of heterochromatic photometry. , 1972, Journal of the Optical Society of America.

[156]  H. Kolb,et al.  Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[157]  W A Rushton,et al.  Signals from cones , 1970, The Journal of physiology.

[158]  R. Marrocco,et al.  On luminance additivity and related topics. , 1969, Vision research.

[159]  B. Boycott,et al.  Organization of the Primate Retina: Light Microscopy , 1969 .

[160]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[161]  R M Boynton,et al.  Vision: The Additivity Law Made To Work for Heterochromatic Photometry with Bipartite Fields , 1968, Science.

[162]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[163]  D. H. Kelly Frequency Doubling in Visual Responses , 1966 .

[164]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[165]  J. Robson Spatial and Temporal Contrast-Sensitivity Functions of the Visual System , 1966 .

[166]  G Westheimer,et al.  Pupil size and visual resolution. , 1964, Vision research.

[167]  D. H. Kelly Visual responses to time-dependent stimuli. III. Individual variations. , 1962, Journal of the Optical Society of America.

[168]  S. A. Talbot Physiology of the retina and the visual pathway , 1961 .

[169]  R. L. Valois Color Vision Mechanisms in the Monkey , 1960 .

[170]  W. Stiles,et al.  N.P.L. Colour-matching Investigation: Final Report (1958) , 1959 .

[171]  H DE LANGE DZN,et al.  Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light. , 1958, Journal of the Optical Society of America.

[172]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[173]  A. Dresler,et al.  The Non-Additivity of Heterochromatic Brightnesses , 1953 .

[174]  W. Stiles Increment thresholds and the mechanisms of colour vision. , 1949, Documenta ophthalmologica. Advances in ophthalmology.

[175]  E. Willmer Colour of Small Objects , 1944, Nature.

[176]  Ewald Hering,et al.  Grundzüge der Lehre vom Lichtsinn. , 1920 .