GALOIS GROUPS OF UNRAMIFIED SOLVABLE EXTENSIONS
暂无分享,去创建一个
Throughout this paper, Q, Z and e;n denote the rational numbers, the rational integers and a primitive n-th root of unity for a positive integer n. Let F be an algebraic number field of finite degree. We do not know any general method of determining the structure of the Galois group of the maximal unramified (solvable) extension of F. We mean by "unramified" that every finite or infinite prime is unramified. Let Fn = F(e;n) and let F==UnFn. A. Brumer recently proved that
[1] A. Brumer. The class group of all cyclotomic integers , 1981 .
[2] Kenkichi Iwasawa,et al. On Solvable Extentions of Algebraic Number Fields , 1953 .
[3] I. Satake,et al. On solvable extensions of algebraic number fields: Ann. of Math., (2) 58 (1953), 548–572 , 1953 .
[4] H. Reichardt. Konstruktion von Zahlkörpern mit gegebener Galoisgruppe von Primzahlpotenzordnung. , 1937 .