暂无分享,去创建一个
[1] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[2] A. Izenman. Recent Developments in Nonparametric Density Estimation , 1991 .
[3] John E. Kolassa,et al. Series Approximation Methods in Statistics , 1994 .
[4] Amir F. Atiya,et al. Neural Networks for Density Estimation , 1998, NIPS.
[5] Ramesh A. Gopinath,et al. Gaussianization , 2000, NIPS.
[6] Erkki Oja,et al. Independent component analysis: algorithms and applications , 2000, Neural Networks.
[7] P. Deb. Finite Mixture Models , 2008 .
[8] Marina Velikova,et al. Monotone and Partially Monotone Neural Networks , 2010, IEEE Transactions on Neural Networks.
[9] Hugo Larochelle,et al. The Neural Autoregressive Distribution Estimator , 2011, AISTATS.
[10] Hugo Larochelle,et al. MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.
[11] Yoshua Bengio,et al. NICE: Non-linear Independent Components Estimation , 2014, ICLR.
[12] Samy Bengio,et al. Density estimation using Real NVP , 2016, ICLR.
[13] Iain Murray,et al. Masked Autoregressive Flow for Density Estimation , 2017, NIPS.
[14] Barnabás Póczos,et al. Transformation Autoregressive Networks , 2018, ICML.
[15] E Weinan,et al. Monge-Ampère Flow for Generative Modeling , 2018, ArXiv.
[16] David Duvenaud,et al. Neural Ordinary Differential Equations , 2018, NeurIPS.
[17] Alexandre Lacoste,et al. Neural Autoregressive Flows , 2018, ICML.
[18] Nicola De Cao,et al. Block Neural Autoregressive Flow , 2019, UAI.
[19] David Duvenaud,et al. FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models , 2018, ICLR.
[20] Antoine Wehenkel,et al. Unconstrained Monotonic Neural Networks , 2019, BNAIC/BENELEARN.
[21] Ivan Kobyzev,et al. Normalizing Flows: An Introduction and Review of Current Methods , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.