A fast and accurate algorithm for inferring sparse Ising models via parameters activation to maximize the pseudo-likelihood
暂无分享,去创建一个
Federico Ricci-Tersenghi | Silvio Franz | Jacopo Rocchi | S. Franz | F. Ricci-Tersenghi | Jacopo Rocchi
[1] Andrea Pagnani,et al. Improved pseudolikelihood regularization and decimation methods on non-linearly interacting systems with continuous variables , 2017, SciPost Physics.
[2] G. Miller,et al. Cognitive science. , 1981, Science.
[3] B. H.J.KappentandF.. Efficient learning in Boltzmann Machines using linear response theory* , 2018 .
[4] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[5] M. Mézard,et al. Journal of Statistical Mechanics: Theory and Experiment , 2011 .
[6] Michael J. Todd,et al. Mathematical programming , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[7] J. Besag. Efficiency of pseudolikelihood estimation for simple Gaussian fields , 1977 .
[8] M. Opper,et al. Information Geometry of Mean Field Approximation , 2001 .
[9] Sheldon Goldstein,et al. JOURNAL OF STATISTICAL PHYSICS Vol.67, Nos.5/6, June 1992 QUANTUM EQUILIBRIUM AND The , 2002 .
[10] October I. Physical Review Letters , 2022 .
[11] Jascha Sohl-Dickstein,et al. A new method for parameter estimation in probabilistic models: Minimum probability flow , 2011, Physical review letters.
[12] R. BRIGHTMAN,et al. Science Advances , 1948, Nature.
[13] Daniele Ancora,et al. Learning Direct and Inverse Transmission Matrices , 2019, ArXiv.
[14] Andrea Pagnani,et al. Inverse problem for multi-body interaction of nonlinear waves , 2016, Scientific Reports.