Design for model parameter uncertainty using nonlinear confidence regions

An accurate method presented accounts for uncertain model parameters in nonlinear process optimization problems. The model representation is considered in terms of algebraic equations. Uncertain quantity parameters are often discretized into a number of finite values that are then used in multiperiod optimization problems. These discrete values usually range between some lower and upper bound that can be derived from individual confidence intervals. Frequently, more than one uncertain parameter is estimated at a time from a single set of experiments. Thus, using simple lower and upper bounds to describe these parameters may not be accurate, since it assumes the parameters are uncorrelated. In 1999 Rooney and Biegler showed the importance of including parameter correlation in design problems by using elliptical joint confidence regions to describe the correlation among the uncertain model parameters. In chemical engineering systems, however, the parameter estimation problem is often highly nonlinear, and the elliptical confidence regions derived from these problems may not be accurate enough to capture the actual model parameter uncertainty. In this work, the description of model parameter uncertainty is improved by using confidence regions derived from the likelihood ratio test. It captures the nonlinearities efficiently and accurately in the parameter estimation problem. Several examples solved show the importance of accurately capturing the actual model parameter uncertainty at the design stage.

[1]  Jayanta K. Ghosh,et al.  Characterization of priors under which Bayesian and frequentist Barlett corrections are equivalent in the multiparameter case , 1991 .

[2]  C. Floudas,et al.  Active constraint strategy for flexibility analysis in chemical processes , 1987 .

[3]  Christodoulos A. Floudas,et al.  Synthesis of flexible heat exchanger networks with uncertain flowrates and temperatures , 1987 .

[4]  Efstratios N. Pistikopoulos,et al.  Simultaneous design and control optimisation under uncertainty , 2000 .

[5]  Efstratios N. Pistikopoulos,et al.  Optimal synthesis and design of dynamic systems under uncertainty , 1996 .

[6]  Lorenz T. Biegler,et al.  Incorporating joint confidence regions into design under uncertainty , 1999 .

[7]  Efstratios N. Pistikopoulos,et al.  Stochastic optimization based algorithms for process synthesis under uncertainty , 1998 .

[8]  Efstratios N. Pistikopoulos,et al.  Uncertainty in process design and operations , 1995 .

[9]  R. Gunst Regression analysis and its application , 1980 .

[10]  K. Papalexandri,et al.  A Parametric Mixed-Integer Optimization Algorithm for Multiobjective Engineering Problems Involving Discrete Decisions , 1998 .

[11]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[12]  Efstratios N. Pistikopoulos,et al.  An integrated framework for robust and flexible process systems , 1999 .

[13]  Ignacio E. Grossmann,et al.  An index for operational flexibility in chemical process design. Part I: Formulation and theory , 1985 .

[14]  Robert B. Schnabel,et al.  Computational experience with confidence intervals for nonlinear least squares , 1986 .

[15]  Ignacio E. Grossmann,et al.  Optimum design of chemical plants with uncertain parameters , 1978 .

[16]  Ignacio E. Grossmann,et al.  Design optimization of stochastic flexibility , 1993 .

[17]  U. Diwekar,et al.  Efficient sampling technique for optimization under uncertainty , 1997 .

[18]  H. O. Hartley,et al.  Exact confidence regions for the parameters in non-linear regression laws , 1964 .

[19]  Donald G. Watts,et al.  Estimating parameters in nonlinear rate equations , 1994 .

[20]  E. Pistikopoulos,et al.  Novel approach for optimal process design under uncertainty , 1995 .

[21]  Thomas J. DiCiccio,et al.  On Bartlett adjustments for approximate Bayesian inference , 1993 .

[22]  Shuzo Ohe,et al.  Computer aided data book of vapor-liquid equilibria , 1975 .

[23]  Ignacio E. Grossmann,et al.  An index for operational flexibility in chemical process design. Part I , 1983 .

[24]  E. Pistikopoulos,et al.  A multiparametric programming approach for linear process engineering problems under uncertainty , 1997 .

[25]  Efstratios N. Pistikopoulos,et al.  An optimization approach for process engineering problems under uncertainty , 1996 .

[26]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[27]  Efstratios N. Pistikopoulos,et al.  Integration of flexibility, reliability and maintenance in process synthesis and design , 1994 .