Quadrature chaos-shift keying: theory and performance analysis

In this brief, we propose a multilevel version of the differential chaos shift keying (DCSK) telecommunication system. The scheme, that we call quadrature chaos shift keying (QCSK), is based upon the generation of an orthogonal basis of chaotic functions. QCSK is characterized by an increased data rate with respect to DCSK, with the same bandwidth occupation. The price for the performance enhancement is the increased complexity of both the transmitter and the receiver.

[1]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[2]  I. M. Jacobs,et al.  Principles of Communication Engineering , 1965 .

[3]  Boualem Boashash,et al.  Analytic signal generation-tips and traps , 1994, IEEE Trans. Signal Process..

[4]  Celso Grebogi,et al.  Using Chaos for Digital Communications , 1995 .

[5]  G. Kolumbán Theoretical noise performance of correlator-based chaotic communications schemes , 2000 .

[6]  Michael Peter Kennedy,et al.  FM-DCSK: A robust modulation scheme for chaotic communications , 1998 .

[7]  Gábor Kis,et al.  Multipath performance of FM-DCSK chaotic communications system , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[8]  John G. Proakis,et al.  Digital Communications , 1983 .

[9]  L. Tsimring,et al.  Performance analysis of correlation-based communication schemes utilizing chaos , 2000 .

[10]  Michael Peter Kennedy,et al.  Communications using chaos/spl Gt/MINUS. III. Performance bounds for correlation receivers , 2000 .

[11]  Wolfgang Schwarz,et al.  Noise performance of chaotic communication systems , 2000 .

[12]  Geoffrey R. Tomlinson,et al.  Use of the Hilbert transform in modal analysis of linear and non-linear structures , 1984 .

[13]  Hiroshi Iwakura,et al.  Design and multiplierless realization of maximally flat FIR digital Hilbert transformers , 1999, IEEE Trans. Signal Process..

[14]  Zbigniew Galias,et al.  Quadrature chaos shift keying , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[15]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. I . Fundamentals of digital communications , 1997 .

[16]  L. Rabiner,et al.  A computer program for designing optimum FIR linear phase digital filters , 1973 .

[17]  Géza Kolumbán BASIS FUNCTION DESCRIPTION OF CHAOTIC MODULATION SCHEMES , 2000 .

[18]  V. Ramachandran,et al.  Design of equiripple nonrecursive digital differentiators and Hilbert transformers using a weighted least-squares technique , 1994, IEEE Trans. Signal Process..

[19]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. II. Chaotic modulation and chaotic synchronization , 1998 .

[20]  Marvin Kenneth Simon Digital Communication Techniques , 1994 .

[21]  J. E. Franca,et al.  Polyphase SC IIR Hilbert transformers , 1999 .

[22]  Yoshihisa Ishida,et al.  Design and implementation of an ideal Hilbert transformer using neural networks , 1993, Proceedings of IEEE Pacific Rim Conference on Communications Computers and Signal Processing.

[23]  Nikolai F. Rulkov,et al.  Chaotic pulse position modulation: a robust method of communicating with chaos , 2000, IEEE Communications Letters.

[24]  Ii Leon W. Couch Digital and analog communication systems , 1983 .

[25]  Michael Peter Kennedy,et al.  Recent advances in communicating with chaos , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[26]  Pei Soo-Chang,et al.  Design of FIR Hilbert transformers and differentiators by eigenfilter , 1988 .