On NI and NJ skew PBW extensions

We establish necessary or sufficient conditions to guarantee that skew Poincaré-Birkhoff-Witt extensions are NI or NJ rings. Our results extend those corresponding for skew polynomial rings and establish similar properties for other families of noncommutative rings such as universal enveloping algebras and examples of differential operators.

[1]  A. Nasr-Isfahani On NI Skew Polynomial Rings , 2015 .

[2]  L. Lebruyn Central Singularities of Quantum Spaces , 1995 .

[3]  A. Moussavi,et al.  Ore Extensions of Skew Armendariz Rings , 2008 .

[4]  A. Nasr-Isfahani Jacobson Radicals of Skew Polynomial Rings of Derivation Type , 2014, Canadian Mathematical Bulletin.

[5]  A. Reyes,et al.  Skew Poincaré–Birkhoff–Witt extensions over weak compatible rings , 2020 .

[6]  H. Suárez Koszulity for graded skew PBW extensions , 2016, 1610.04275.

[7]  Gooyong Shin Prime ideals and sheaf representation of a pseudo symmetric ring , 1973 .

[8]  V. Artamonov Derivations of Skew PBW-Extensions , 2015 .

[9]  O. Lezama,et al.  Prime ideals of skew PBW extensions , 2014, 1402.2321.

[10]  Oswaldo Lezama,et al.  Non-commutative algebraic geometry of semi-graded rings , 2016, Int. J. Algebra Comput..

[11]  Piotr Grzeszczuk,et al.  Jacobson radicals of ring extensions , 2012 .

[12]  G. Marks ON 2-PRIMAL ORE EXTENSIONS , 2001 .

[13]  Tsit Yuen Lam,et al.  A first course in noncommutative rings , 2002 .

[14]  O. Lezama,et al.  Some Homological Properties of Skew PBW Extensions , 2013, 1310.6639.

[15]  O. Lezama,et al.  Gröbner Bases for Ideals of σ-PBW Extensions , 2010 .

[16]  E. Hashemi,et al.  BAER AND QUASI-BAER PROPERTIES OF SKEW PBW EXTENSIONS , 2019 .

[17]  Center of skew PBW extensions , 2018, 1804.05425.

[18]  O. Lezama,et al.  d-Hermite rings and skew PBW extensions , 2014, 1408.2240.

[19]  Ken R. Goodearl,et al.  Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions , 1988 .

[20]  A. Reyes,et al.  Radicals and Köthe’s Conjecture for Skew PBW Extensions , 2019, Communications in Mathematics and Statistics.

[21]  Yang Lee,et al.  Examples of strongly π-regular rings , 2004 .

[22]  A. Reyes,et al.  Skew Poincaré–Birkhoff–Witt extensions over weak zip rings , 2018, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry.

[23]  S. Annin ASSOCIATED PRIMES OVER ORE EXTENSION RINGS , 2004 .

[24]  Yang Lee,et al.  Structure and topological conditions of NI rings , 2006 .

[25]  A. Reyes,et al.  Associated prime ideals over skew PBW extensions , 2020 .

[26]  A. Alhevaz,et al.  (Σ,∆)-Compatible Skew PBW Extension Ring , 2017 .

[27]  Thomas Cassidy,et al.  Generalizations of graded Clifford algebras and of complete intersections , 2010 .

[28]  O. Ore Theory of Non-Commutative Polynomials , 1933 .

[29]  J. Srivastava Algebraic Structures and Applications , 2000 .

[30]  O. Lezama,et al.  Calabi-Yau property for graded skew PBW extensions , 2017 .

[31]  Yao Wang,et al.  Extensions and topological conditions of NJ rings , 2019, TURKISH JOURNAL OF MATHEMATICS.

[32]  A. Alhevaz,et al.  EXTENSIONS OF RINGS OVER 2-PRIMAL RINGS , 2019 .

[33]  H. Su'arez,et al.  Double Ore extensions versus graded skew PBW extensions , 2018, Communications in Algebra.

[34]  Oswaldo Lezama,et al.  Koszulity and Point Modules of Finitely Semi-Graded Rings and Algebras , 2019, Symmetry.

[35]  A. Reyes Skew PBW Extensions of Baer, quasi-Baer, p.p. and p.q.-rings , 2015 .

[36]  G. Marks A taxonomy of 2-primal rings , 2003 .

[37]  A. Reyes,et al.  Minimal prime ideals of skew PBW extensions over 2-primal compatible rings , 2020, Revista Colombiana de Matemáticas.

[38]  A. Reyes,et al.  Some remarks about minimal prime ideals of skew Poincaré-Birkhoff-Witt extensions , 2020 .

[39]  E. Hashemi,et al.  A CLASSIFICATION OF RING ELEMENTS IN SKEW PBW EXTENSIONS OVER COMPATIBLE RINGS , 2020 .

[40]  A. Reyes,et al.  A notion of compatibility for Armendariz and Baer properties over skew PBW extensions , 2017 .

[41]  Yang Lee,et al.  Structure of NI rings related to centers , 2021 .

[42]  José Oswaldo Lezama Computation of point modules of finitely semi-graded rings , 2019, Communications in Algebra.