On the need for a theory of wildland fire spread

We explore the basis of understanding wildland fire behaviour with the intention of stimulating curiosity and promoting fundamental investigations of fire spread problems that persist even in the presence of tremendous modelling advances. Internationally, many fire models have been developed based on a variety of assumptions and expressions for the fundamental heat transfer and combustion processes. The diversity of these assumptions raises the question as to whether the absence of a sound and coherent fire spread theory is partly responsible. We explore the thesis that, without a common understanding of what processes occur and how they occur, model reliability cannot be confirmed. A theory is defined as a collection of logically connected hypotheses that provide a coherent explanation of some aspect of reality. Models implement theory for a particular purpose, including hypotheses of phenomena and practical uses, such as prediction. We emphasise the need for theory and demonstrate the difference between theory and modelling. Increasingly sophisticated fire management requires modelling capabilities well beyond the fundamental basis of current models. These capabilities can only be met with fundamental fire behaviour research. Furthermore, possibilities as well as limitations for modelling may not be known or knowable without first having the theory.

[1]  Stanley B. Martin,et al.  Diffusion-controlled ignition of cellulosic materials by intense radiant energy , 1965 .

[2]  F. Steward A Mechanistic Fire Spread Model , 1971 .

[3]  Marc Janssens,et al.  Piloted ignition of wood: A review , 1991 .

[4]  H. C. Hottel,et al.  The modeling of firespread through a fuel bed , 1965 .

[5]  Vytenis Babrauskas,et al.  Effective heat of combustion for flaming combustion of conifers , 2006 .

[6]  J. R. Welker,et al.  The irradiation and ignition of wood by flame , 1968 .

[7]  D. Weise,et al.  Comparison of burning characteristics of live and dead chaparral fuels , 2006 .

[8]  D. Weise,et al.  Experimental measurements during combustion of moist individual foliage samples , 2010 .

[9]  Philip E. Dennison,et al.  Critical live fuel moisture in chaparral ecosystems: a threshold for fire activity and its relationship to antecedent precipitation , 2009 .

[10]  P. Baines,et al.  Physical mechanisms for the propagation of surface fires , 1990 .

[11]  C. Little Seasonal changes in carbohydrate and moisture content in needles of Balsam Fir (Abies balsamea). , 1970 .

[12]  A. Sullivan,et al.  Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models , 2007, 0706.4128.

[13]  Norman J. Alvares,et al.  The Influence of Free Convection on the Ignition of Vertical Cellulosic Panels by Thermal Radiation , 1970 .

[14]  Arvind Atreya,et al.  Heat and mass transfer during piloted ignition of cellulosic solids , 1989 .

[15]  D. Rubenstein,et al.  Introduction to heat transfer , 2022 .

[16]  Joe H. Scott,et al.  Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel?s Surface Fire Spread Model , 2015 .

[17]  J. Quintiere,et al.  Mass flux of combustible solids at piloted ignition , 2007 .

[18]  ALBERT SIMEONI,et al.  Proposal for Theoretical Improvement of Semi-Physical Forest Fire Spread Models Thanks to a Multiphase Approach: Application to a Fire Spread Model Across a Fuel Bed , 2001 .

[19]  W. Mell,et al.  A physics-based approach to modelling grassland fires , 2007 .

[20]  Behdad Moghtaderi,et al.  A new correlation for bench-scale piloted ignition data of wood , 1997 .

[21]  Mark A. Finney,et al.  An examination of flame shape related to convection heat transfer in deep-fuel beds , 2010 .

[22]  Tom Beer,et al.  The interaction of wind and fire , 1991 .

[23]  A. Fernandez-Pello,et al.  Oxidizer Flow Effects on the Flammability of Solid Combustibles , 2001 .

[24]  Martin E. Alexander,et al.  Variation in wind and crown fire behaviour in a northern jack pine - black spruce forest 1 , 2004 .

[25]  A. Atreya,et al.  Effect Of Environmental Variables On Piloted Lgnition , 1991 .

[26]  H. W. Emmons,et al.  Fundamental problems of the free burning fire , 1965 .

[27]  D. M. Gates,et al.  RADIATION AND CONVECTION IN CONIFERS , 1964 .

[28]  R. Ross,et al.  A kinetic and surface study of the thermal decomposition of cellulose powder in inert and oxidizing atmospheres , 1978 .

[29]  M. Owens,et al.  Seasonal Patterns of Plant Flammability and Monoterpenoid Content in Juniperus ashei , 1998, Journal of Chemical Ecology.

[30]  Robert E. Keane,et al.  Estimating forest canopy bulk density using six indirect methods , 2005 .

[31]  Isaac C. Grenfell,et al.  An examination of fire spread thresholds in discontinuous fuel beds , 2010 .

[32]  D. Middleton,et al.  Analysis of small-scale convective dynamics in a crown fire using infrared video camera imagery , 1999 .

[33]  F. Williams,et al.  Flame Propagation Along Matchstick Arrays , 1970 .

[34]  A. F. Roberts A review of kinetics data for the pyrolysis of wood and related substances , 1970 .

[35]  Vytenis Babrauskas,et al.  Ignition of Wood: A Review of the State of the Art , 2002 .

[36]  Jean Baptiste Filippi,et al.  A physical model for wildland fires , 2009 .

[37]  A. Sullivan A review of wildland fire spread modelling, 1990-present, 1: Physical and quasi-physical models , 2007, 0706.3074.

[38]  H. Anderson,et al.  Heat transfer and fire spread , 1969 .

[39]  W. Fons,et al.  Analysis of Fire Spread in Light Forest Fuels , 1946 .

[40]  F. Steward,et al.  Flame spread through randomly packed fuel particles , 1969 .

[41]  James K. Brown Bulk densities of nonuniform surface fuels and their application to fire modeling , 1981 .

[42]  Alexandros Dimitrakopoulos,et al.  Flammability Assessment of Mediterranean Forest Fuels , 2001 .

[43]  S. J. Melinek IGNITION BEHAVIOUR OF HEATED WOOD SURFACES , 1969 .

[44]  J. Peñuelas,et al.  Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. , 2008, Plant biology.

[45]  Carl W. Adkins,et al.  A dimensionless correlation for the spread of wind-driven fires , 1988 .

[46]  Dougal Drysdale,et al.  Critical heat and mass transfer at pilot ignition and extinction of a material , 1986 .

[47]  E. Pook,et al.  Variation of Live and Dead Fine Fuel Moisture in Pinus radiata Plantations of the Australian-Capital-Territory , 1993 .

[48]  E. Chuvieco,et al.  Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem , 2009 .

[49]  R. Rothermel,et al.  Predicting changes in chaparral flammability , 1973 .

[50]  Gavriil Xanthopoulos,et al.  A time to ignition–temperature–moisture relationship for branches of three western conifers , 1993 .

[51]  Pierpaolo Duce,et al.  Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin , 2007 .

[52]  F. H. Harlow,et al.  FIRETEC: A transport description of wildfire behavior , 1997 .

[53]  Stephen C. Bunting,et al.  Seasonal Variation in the Ignition Time of Redberry Juniper in West Texas , 1983 .

[54]  F. Albini,et al.  A physical model for firespread in brush , 1967 .

[55]  J.-L Dupuy Testing Two Radiative Physical Models for Fire Spread Through Porous Forest Fuel Beds , 2000 .

[56]  F. Albini A Model for Fire Spread in Wildland Fuels by-Radiation† , 1985 .

[57]  C. E. Baukal,et al.  A review of empirical flame impingement heat transfer correlations , 1996 .

[58]  L. F. Hawley Theoretical Considerations Regarding Factors which Influence Forest Fires , 1926 .

[59]  R. M. Nelson Water Relations of Forest Fuels , 2001 .

[60]  Bret W. Butler,et al.  A radiation-driven model for crown fire spread , 2004 .

[61]  F. A. Williams,et al.  The role of theory in combustion science , 1992 .

[62]  W. Larcher Physiological Plant Ecology , 1977 .

[63]  N. Cheney,et al.  Prediction of Fire Spread in Grasslands , 1998 .

[64]  Wr Catchpole,et al.  Modelling Moisture Damping for Fire Spread in a Mixture of Live and Dead Fuels , 1991 .

[65]  J. Whitelaw,et al.  Convective heat and mass transfer , 1966 .

[66]  F. A. Williams,et al.  Mechanisms of fire spread , 1977 .

[67]  M. Delichatsios Piloted ignition times, critical heat fluxes and mass loss rates at reduced oxygen atmospheres , 2005 .

[68]  Mark A. Finney,et al.  An examination of fuel particle heating during fire spread , 2010 .

[69]  J. Lentini Fire: Chemistry of , 2009 .

[70]  E. Johnson,et al.  Forest fires : behavior and ecological effects , 2001 .

[71]  D. Drysdale An Introduction to Fire Dynamics , 2011 .

[72]  Dominique Morvan,et al.  Modeling of fire spread through a forest fuel bed using a multiphase formulation , 2001 .

[73]  S. Griffies,et al.  A Conceptual Framework for Predictability Studies , 1999 .

[74]  J. A. Rodríguez-Añón,et al.  Energetic study of residual forest biomass using calorimetry and thermal analysis , 2005 .

[75]  William M. Pitts,et al.  Wind effects on fires , 1991 .

[76]  C. E. Van Wagner,et al.  Conditions for the start and spread of crown fire , 1977 .

[77]  Yuji Hasemi,et al.  Surface temperature at ignition of wooden based slabs , 1996 .

[78]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[79]  R. Weber,et al.  Modelling fire spread through fuel beds , 1991 .

[80]  C. M. Countryman Moisture in living fuels affects fire behavior , 1974 .

[81]  R. O. Weber,et al.  Flame Spread Measurements on Single Ponderosa Pine Needles: Effect of Sample Orientation and Concurrent External Flow , 1990 .

[82]  Dougal Drysdale,et al.  Flammability of plastics II: Critical mass flux at the firepoint , 1989 .

[83]  Thomas G. Peterson,et al.  Flame spread through porous fuels , 1973 .

[84]  F. Albini Wildland Fire Spread by Radiation-a Model Including Fuel Cooling by Natural Convection , 1986 .

[85]  J. Quintiere,et al.  Criteria for piloted ignition of combustible solids , 2007 .

[86]  D. D. Drysdale,et al.  Measurement Of The Ignition Temperature Of Wood , 1992 .

[87]  David R. Weise,et al.  Fire spread in chaparral—'go or no-go?' , 2005 .

[88]  H. Lyr,et al.  The physiology of woody plants. , 1967 .

[89]  George F. Carrier,et al.  Wind-aided firespread across arrays of discrete fuel elements. I, Theory , 1991 .

[90]  Rodney Weber,et al.  A model for fire propagation in arrays , 1990 .

[91]  J. Dupuy,et al.  Slope effect on laboratory fire spread: contribution of radiation and convection to fuel bed preheating , 2011 .

[92]  E. A. Catchpole,et al.  Uniform Propagation of a Planar Fire Front Without Wind , 1989 .

[93]  N Oreskes,et al.  Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences , 1994, Science.

[94]  Shankar Mahalingam,et al.  Infrared imagery of Crown-fire dynamics during FROSTFIRE , 2004 .

[95]  M. Özdemir,et al.  Prediction of the boiling temperature and heat flux in sugar–water solutions under pool-boiling conditions , 2008 .

[96]  S. Sen,et al.  Thermal Radiation Modeling In Flames And Fires , 2008 .

[97]  A. Carlos Fernandez-Pello,et al.  Flame Spread Modeling , 1984 .

[98]  J. N. De Ris,et al.  Spread of a laminar diffusion flame , 1969 .

[99]  A. Sullivan,et al.  Thermal decomposition and combustion chemistry of cellulosic biomass , 2012 .

[100]  T. Kozlowski,et al.  Changes in Moisture Contents and Dry Weights of Buds and Leaves of Forest Trees , 1965, Botanical Gazette.

[101]  Y. Jaluria,et al.  An Introduction to Heat Transfer , 1950 .

[102]  J. Moreno,et al.  The relationship between terpenes and flammability of leaf litter , 2009 .