The behavior of the spectral gap under growing drift

We analyze the behavior of the spectral gap of the Laplace-Beltrami operator on a compact Riemannian manifold when a divergence-free drift vector field is added. We increase the drift by multiplication with a large constant c and ask the question how the spectral gap behaves as c goes to infinity. It turns out that the spectral gap stays bounded if and only if the drift-vector field has eigenfunctions in H 1 . In that case the spectral gaps converge and we determine the limit.

[1]  Hassan Aref The development of chaotic advection , 2006 .

[2]  N. Metropolis,et al.  A PROPERTY OF RANDOMNESS OF AN ARITHMETICAL FUNCTION , 1953 .

[3]  Feng-Yu Wang,et al.  Estimation of spectral gap for elliptic operators , 1997 .

[4]  I. Holopainen Riemannian Geometry , 1927, Nature.

[5]  Homer F. Walker,et al.  Asymptotics of solute dispersion in periodic porous media , 1989 .

[6]  B. Franke Integral inequalities for the fundamental solutions of diffusions on manifolds with divergence-free drift , 2004 .

[7]  J. Ottino Mixing, chaotic advection, and turbulence , 1990 .

[8]  D. Anosov,et al.  Ergodic Properties of Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature , 2020 .

[9]  Mu-Fa Chen Eigenvalues, inequalities and ergodic theory , 2000 .

[10]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[11]  S. Yau,et al.  Estimates of eigenvalues of a compact Riemannian manifold , 1980 .

[12]  H. Kushner Asymptotic global behavior for stochastic approximation and diffusions with slowly decreasing noise effects: Global minimization via Monte Carlo , 1987 .

[13]  George Papanicolaou,et al.  Convection Enhanced Diffusion for Periodic Flows , 1994, SIAM J. Appl. Math..

[14]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[15]  David Márquez Convergence rates for annealing diffusion processes , 1997 .

[16]  N. Nadirashvili,et al.  Elliptic Eigenvalue Problems with Large Drift and Applications to Nonlinear Propagation Phenomena , 2005 .

[17]  Mu-Fa Chen,et al.  Estimation of the First Eigenvalue of Second Order Elliptic Operators , 1995 .

[18]  C. Hwang,et al.  Accelerating diffusions , 2005, math/0505245.

[19]  C. Hwang,et al.  Accelerating Gaussian Diffusions , 1993 .

[20]  Stephen Wiggins,et al.  Foundations of chaotic mixing , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  R. D. Richtmyer,et al.  Principles of Advanced Mathematical Physics , 1978 .

[22]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[23]  S. Heinze Diffusion-Advection in Cellular Flows with Large Peclet Numbers , 2003 .

[24]  Stephen P. Brooks,et al.  Markov chain Monte Carlo method and its application , 1998 .

[25]  Diffusion and Mixing in Fluid Flow , 2005, math/0509663.

[26]  D. V. Anosov,et al.  Geodesic flows on closed Riemann manifolds with negative curvature , 1969 .