DNA conformational polymorphism for biosensing applications.

[1]  Feifei Xing,et al.  Recent Advances in Novel DNA Guiding Nanofabrication and Nanotechnology , 2018, Nanofabrication.

[2]  A. Fekry,et al.  A novel simple biosensor containing silver nanoparticles/propolis (bee glue) for microRNA let-7a determination. , 2018, Materials science & engineering. C, Materials for biological applications.

[3]  Juwen Shen,et al.  Valency-Controlled Framework Nucleic Acid Signal Amplifiers. , 2018, Angewandte Chemie.

[4]  Highly sensitive electrochemical biosensor for streptavidin detection based on CdSe quantum dots. , 2018, Biosensors & bioelectronics.

[5]  G-quadruplex formation enhancing energy transfer in self-assembled multilayers and fluorescence recognize for Pb2+ ions , 2018 .

[6]  Maotian Xu,et al.  Design of metal-ion-triggered assembly of label-free split G-quadruplex/duplex DNA for turn-on detection of Hg2+ in fetal calf serum , 2018 .

[7]  Tiehua Zhang,et al.  Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline , 2018 .

[8]  X. Le,et al.  DNAzyme-Mediated Assays for Amplified Detection of Nucleic Acids and Proteins. , 2018, Analytical chemistry.

[9]  Somayeh Jamshidi Moghadam,et al.  Helix structure of the double-stranded DNA for aptameric biosensing and imaging of cytochrome c. , 2018, Analytical biochemistry.

[10]  H. Gong,et al.  Accurate and sensitive fluorescence detection of DNA based on G-quadruplex hairpin DNA. , 2018, Talanta.

[11]  Simon Chi-Chin Shiu,et al.  Aptamer-based electrochemical biosensor for highly sensitive and selective malaria detection with adjustable dynamic response range and reusability , 2018 .

[12]  D. Beckmann,et al.  An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy , 2018, Analytical and Bioanalytical Chemistry.

[13]  X. Qu,et al.  Novel electrochemiluminescence of silver nanoclusters fabricated on triplex DNA scaffolds for label-free detection of biothiols. , 2017, Biosensors & bioelectronics.

[14]  Matti Kaisti,et al.  Detection principles of biological and chemical FET sensors. , 2017, Biosensors & bioelectronics.

[15]  Chu‐Young Kim,et al.  Therapeutic applications of synthetic nucleic acid aptamers. , 2017, Current opinion in biotechnology.

[16]  Itamar Willner,et al.  Triplex DNA Nanostructures: From Basic Properties to Applications. , 2017, Angewandte Chemie.

[17]  Hafsa Korri-Youssoufi,et al.  Direct electrochemical DNA biosensor based on reduced graphene oxide and metalloporphyrin nanocomposite , 2017 .

[18]  Pascal Röthlisberger,et al.  Nucleic Acid Aptamers: Emerging Applications in Medical Imaging, Nanotechnology, Neurosciences, and Drug Delivery , 2017, International journal of molecular sciences.

[19]  Baoquan Ding,et al.  Self‐Assembled DNA Nanostructures for Biomedical Applications , 2017 .

[20]  L. Ling,et al.  Sequence specific recognition of HIV-1 dsDNA in the large amount of normal dsDNA based upon nicking enzyme signal amplification and triplex DNA. , 2017, Talanta.

[21]  D. Mayer,et al.  Biosensing near the neutrality point of graphene , 2017, Science Advances.

[22]  Junjie Liu,et al.  Disease-Related Detection with Electrochemical Biosensors: A Review , 2017, Sensors.

[23]  N. Wu,et al.  Fluorescence and Sensing Applications of Graphene Oxide and Graphene Quantum Dots: A Review. , 2017, Chemistry, an Asian journal.

[24]  M. Kulkarni,et al.  Understanding B-DNA to A-DNA transition in the right-handed DNA helix: Perspective from a local to global transition. , 2017, Progress in biophysics and molecular biology.

[25]  G. Jie,et al.  A novel silver nanocluster in situ synthesized as versatile probe for electrochemiluminescence and electrochemical detection of thrombin by multiple signal amplification strategy. , 2017, Biosensors & bioelectronics.

[26]  A. Devadoss,et al.  Graphene Field Effect Transistors for Biomedical Applications: Current Status and Future Prospects , 2017, Diagnostics.

[27]  Kevin W Plaxco,et al.  A Biomimetic Phosphatidylcholine-Terminated Monolayer Greatly Improves the In Vivo Performance of Electrochemical Aptamer-Based Sensors. , 2017, Angewandte Chemie.

[28]  Fei Zhang,et al.  DNA Origami: Scaffolds for Creating Higher Order Structures. , 2017, Chemical reviews.

[29]  Xiujuan Cui,et al.  Target-induced duplex–triplex transition for ratiometric detection of adenosine triphosphate , 2017 .

[30]  M. Gu,et al.  Aptamer-based environmental biosensors for small molecule contaminants. , 2017, Current opinion in biotechnology.

[31]  R. Kataky,et al.  A G-quadruplex aptamer based impedimetric sensor for free lysine and arginine , 2017 .

[32]  Tao Yang,et al.  Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2. , 2017, Biosensors & bioelectronics.

[33]  Xiaolei Zuo,et al.  Fluorescent biosensors enabled by graphene and graphene oxide. , 2017, Biosensors & bioelectronics.

[34]  Siyu Zeng,et al.  Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching. , 2017, Biosensors & bioelectronics.

[35]  N. Zheng,et al.  A simple aptamer-based fluorescent assay for the detection of Aflatoxin B1 in infant rice cereal. , 2017, Food chemistry.

[36]  A. Fekry,et al.  A new simple electrochemical Moxifloxacin Hydrochloride sensor built on carbon paste modified with silver nanoparticles. , 2017, Biosensors & bioelectronics.

[37]  T. Huyền,et al.  Carbon Nanotube Field-Effect Transistor for DNA Sensing , 2017, Journal of Electronic Materials.

[38]  Fluorometric determination of lead(II) and mercury(II) based on their interaction with a complex formed between graphene oxide and a DNAzyme , 2017, Microchimica Acta.

[39]  V. Zucolotto,et al.  Impedance sensing of DNA hybridization onto nanostructured phthalocyanine-modified electrodes , 2016 .

[40]  B. Wang,et al.  Label-free electrochemical impedance peptide-based biosensor for the detection of cardiac troponin I incorporating gold nanoparticles modified carbon electrode , 2016 .

[41]  Jian-hui Jiang,et al.  Graphene oxide based DNA nanoswitches as a programmable pH-responsive biosensor , 2016 .

[42]  Debmalya Bhattacharyya,et al.  Metal Cations in G-Quadruplex Folding and Stability , 2016, Front. Chem..

[43]  Na Li,et al.  Thiazole orange as a fluorescent probe: Label-free and selective detection of silver ions based on the structural change of i-motif DNA at neutral pH. , 2016, Talanta.

[44]  Guo-Jun Zhang,et al.  Aptamer based fluorescent cocaine assay based on the use of graphene oxide and exonuclease III-assisted signal amplification , 2016, Microchimica Acta.

[45]  J. Hodgkiss,et al.  Electrostatic gating in carbon nanotube aptasensors. , 2016, Nanoscale.

[46]  A. Fekry,et al.  Nano-TiO₂ modified carbon paste sensor for electrochemical nicotine detection using anionic surfactant. , 2016, Biosensors & bioelectronics.

[47]  Parikha Mehrotra Biosensors and their applications - A review. , 2016, Journal of oral biology and craniofacial research.

[48]  Yunfang Xiong,et al.  Label-free electrochemiluminescent detection of transcription factors with hybridization chain reaction amplification , 2016 .

[49]  Ke-Jing Huang,et al.  Layered molybdenum selenide stacking flower-like nanostructure coupled with guanine-rich DNA sequence for ultrasensitive ochratoxin A aptasensor application , 2016 .

[50]  Jing‐Juan Xu,et al.  A ratiometric electrochemiluminescence detection for cancer cells using g-C3N4 nanosheets and Ag-PAMAM-luminol nanocomposites. , 2016, Biosensors & bioelectronics.

[51]  X. Qu,et al.  Carbon Nanomaterials and DNA: from Molecular Recognition to Applications. , 2016, Accounts of chemical research.

[52]  Huimin Zhao,et al.  Electrolytic exfoliation synthesis of boron doped graphene quantum dots: a new luminescent material for electrochemiluminescence detection of oncogene microRNA-20a , 2016 .

[53]  Xiaobo Min,et al.  DNAzyme catalytic beacons-based a label-free biosensor for copper using electrochemical impedance spectroscopy , 2016 .

[54]  Guojun Zhang,et al.  Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection. , 2015, Biosensors & bioelectronics.

[55]  D. Tang,et al.  Hemin/G-quadruplex-based DNAzyme concatamers for in situ amplified impedimetric sensing of copper(II) ion coupling with DNAzyme-catalyzed precipitation strategy. , 2015, Biosensors & bioelectronics.

[56]  Huixiang Liu,et al.  A facile and sensitive electrochemiluminescence biosensor for Hg2+ analysis based on a dual-function oligonucleotide probe. , 2015, Biosensors & bioelectronics.

[57]  Ting Hou,et al.  A versatile label-free and signal-on electrochemical biosensing platform based on triplex-forming oligonucleotide probe. , 2015, Analytica chimica acta.

[58]  Xiangmin Miao,et al.  Triplex DNA: A new platform for polymerase chain reaction – based biosensor , 2015, Scientific Reports.

[59]  Yoshio Suzuki,et al.  Development of Functional Fluorescent Molecular Probes for the Detection of Biological Substances , 2015, Biosensors.

[60]  Cheng Zong,et al.  Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity. , 2015, Journal of the American Chemical Society.

[61]  Xiaoyan Wu,et al.  An "off-on" electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA. , 2015, Analytical chemistry.

[62]  Yu Hou,et al.  A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. , 2015, Biosensors & bioelectronics.

[63]  Longhua Guo,et al.  Hyperbranched rolling circle amplification based electrochemiluminescence aptasensor for ultrasensitive detection of thrombin. , 2015, Biosensors & bioelectronics.

[64]  Shiqiang Wei,et al.  Impedimetric DNA-Based Biosensor for Silver Ions Detection with Hemin/G-Quadruplex Nanowire as Enhancer , 2014 .

[65]  G. Shen,et al.  Sensitive and selective electrochemical DNA sensor for the analysis of cancer-related single nucleotide polymorphism , 2014 .

[66]  Xiangmin Miao,et al.  Electrochemical molecular beacon biosensor for sequence-specific recognition of double-stranded DNA. , 2014, Biosensors & bioelectronics.

[67]  Huangxian Ju,et al.  "Off-on" electrochemiluminescence system for sensitive detection of ATP via target-induced structure switching. , 2014, Analytical chemistry.

[68]  Jinsong Ding,et al.  Fluorescent sensors using DNA-functionalized graphene oxide , 2014, Analytical and Bioanalytical Chemistry.

[69]  Francesco Ricci,et al.  Folding-Upon-Binding and Signal-On Electrochemical DNA Sensor with High Affinity and Specificity , 2014, Analytical chemistry.

[70]  Juewen Liu,et al.  DNA stabilized fluorescent metal nanoclusters for biosensor development , 2014 .

[71]  Juewen Liu,et al.  Aptamer-based biosensors for biomedical diagnostics. , 2014, The Analyst.

[72]  Mehmet Lütfi Yola,et al.  A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide , 2014 .

[73]  Bor-Ran Li,et al.  Advances in nanowire transistors for biological analysis and cellular investigation. , 2014, The Analyst.

[74]  X. Qu,et al.  Graphene platform used for electrochemically discriminating DNA triplex. , 2014, ACS applied materials & interfaces.

[75]  Jiye Shi,et al.  Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. , 2014, Analytical chemistry.

[76]  Hua-Zhong Yu,et al.  Functional DNA switches: rational design and electrochemical signaling. , 2014, Chemical Society reviews.

[77]  Joakim Lundeberg,et al.  Visual detection of DNA on paper chips. , 2014, Analytical chemistry.

[78]  Huang-Hao Yang,et al.  Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures , 2014, Microchimica Acta.

[79]  Longhua Guo,et al.  Label-free electrochemical impedance biosensor for sequence-specific recognition of double-stranded DNA , 2013 .

[80]  Kevin W Plaxco,et al.  Detection of IP-10 protein marker in undiluted blood serum via an electrochemical E-DNA scaffold sensor. , 2013, The Analyst.

[81]  H. Day,et al.  Silver cations fold i-motif at neutral pH. , 2013, Chemical communications.

[82]  Ramon Eritja,et al.  DNA origami as a DNA repair nanosensor at the single-molecule level. , 2013, Angewandte Chemie.

[83]  Xiaohong Li,et al.  Highly sensitive detection of α-naphthol based on G-DNA modified gold electrode by electrochemical impedance spectroscopy. , 2013, Biosensors & bioelectronics.

[84]  X. Qu,et al.  Lighting up left-handed Z-DNA: photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations , 2013, Nucleic acids research.

[85]  Sang Woo Han,et al.  Quantitative and multiplexed microRNA sensing in living cells based on peptide nucleic acid and nano graphene oxide (PANGO). , 2013, ACS nano.

[86]  Xiwen He,et al.  Electrochemiluminescent biosensor of ATP using tetrahedron structured DNA and a functional oligonucleotide for Ru(phen)3(2+) intercalation and target identification. , 2013, Biosensors & bioelectronics.

[87]  J. Raoof,et al.  A new peptide nucleotide acid biosensor for electrochemical detection of single nucleotide polymorphism in duplex DNA via triplex structure formation , 2013, Journal of the Iranian Chemical Society.

[88]  Shankar Balasubramanian,et al.  G-Quadruplex structures are stable and detectable in human genomic DNA , 2013, Nature Communications.

[89]  Alimuddin Zumla,et al.  Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. , 2013, The Lancet. Infectious diseases.

[90]  William Putzbach,et al.  Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review , 2013, Sensors.

[91]  Limin Yang,et al.  A novel and versatile sensing platform based on HRP-mimicking DNAzyme-catalyzed template-guided deposition of polyaniline. , 2013, Biosensors & bioelectronics.

[92]  Weihong Tan,et al.  Versatile DNAzyme-based amplified biosensing platforms for nucleic acid, protein, and enzyme activity detection. , 2013, Analytical chemistry.

[93]  C. Yu,et al.  Multiplex electrochemical genosensor for identifying toxigenic Vibrio cholerae serogroups O1 and O139. , 2013, Chemical communications.

[94]  R. Yu,et al.  Electrocatalytic assay of mercury(II) ions using a bifunctional oligonucleotide signal probe. , 2013, Analytica chimica acta.

[95]  Alessandra Bonanni,et al.  Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection. , 2012, ACS nano.

[96]  X. Qu,et al.  A human telomeric DNA-based chiral biosensor. , 2012, Chemical communications.

[97]  Feng Yan,et al.  Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification. , 2012, Analytical chemistry.

[98]  Yi Xiao,et al.  Electrochemical DNA three-way junction based sensor for distinguishing chiral metallo-supramolecular complexes. , 2012, Chemical communications.

[99]  Nicole Jaffrezic-Renault,et al.  A sensitive and selective thrombin impedimetric aptasensor based on tailored aptamers obtained by solid-phase synthesis , 2012 .

[100]  X. Qu,et al.  Toward site-specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds , 2012, Nucleic acids research.

[101]  Yunlei Zhou,et al.  Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system. , 2012, Biosensors & bioelectronics.

[102]  M. Moreno,et al.  Applications of peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) in biosensor development , 2012, Analytical and Bioanalytical Chemistry.

[103]  Barbara Saccà,et al.  DNA origami: the art of folding DNA. , 2012, Angewandte Chemie.

[104]  Yi Lu,et al.  Metal ion-dependent DNAzymes and their applications as biosensors. , 2012, Metal ions in life sciences.

[105]  Yuzhong Zhang,et al.  Label-free electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles, polythionine, and graphene , 2012, Microchimica Acta.

[106]  Arica A Lubin,et al.  Electrochemical biosensors employing an internal electrode attachment site and achieving reversible, high gain detection of specific nucleic acid sequences. , 2011, Analytical chemistry.

[107]  Y. Chai,et al.  Dual signal amplification for highly sensitive electrochemical detection of uropathogens via enzyme-based catalytic target recycling. , 2011, Biosensors & bioelectronics.

[108]  Yan Xu,et al.  Chemistry in human telomere biology: structure, function and targeting of telomere DNA/RNA. , 2011, Chemical Society reviews.

[109]  Xi Chen,et al.  Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods , 2011, Nucleic acids research.

[110]  Hari K. K. Subramanian,et al.  The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami. , 2011, Nano letters.

[111]  Guobao Xu,et al.  Applications and trends in electrochemiluminescence. , 2010, Chemical Society reviews.

[112]  D. Buttry,et al.  Recent advances in electrochemical DNA hybridization sensors. , 2010, The Analyst.

[113]  M. Mascini,et al.  Electrochemical nucleic acid-based biosensors: Concepts, terms, and methodology (IUPAC Technical Report) , 2010 .

[114]  Sang Yup Lee,et al.  Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. , 2010, Nano letters.

[115]  Guo-Li Shen,et al.  Electrochemical aptameric recognition system for a sensitive protein assay based on specific target binding-induced rolling circle amplification. , 2010, Analytical chemistry.

[116]  Niina J. Ronkainen,et al.  Electrochemical biosensors. , 2010, Chemical Society reviews.

[117]  Yi Xiao,et al.  i-Motif quadruplex DNA-based biosensor for distinguishing single- and multiwalled carbon nanotubes. , 2009, Journal of the American Chemical Society.

[118]  Wei Xu,et al.  Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. , 2009, Angewandte Chemie.

[119]  S. Dong,et al.  Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. , 2009, Analytical chemistry.

[120]  Juewen Liu,et al.  Functional nucleic acid sensors. , 2009, Chemical reviews.

[121]  N. Araki,et al.  Silver ion unusually stabilizes the structure of a parallel-motif DNA triplex. , 2009, Journal of the American Chemical Society.

[122]  Kemin Wang,et al.  Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction , 2009, Nucleic acids research.

[123]  Zhiwei Zhu,et al.  Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes. , 2008, Analytical chemistry.

[124]  G. Shen,et al.  Reversible electronic nanoswitch based on DNA G-quadruplex conformation: a platform for single-step, reagentless potassium detection. , 2008, Biomaterials.

[125]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008, Sensors.

[126]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[127]  S. Mirkin Discovery of alternative DNA structures: a heroic decade (1979-1989). , 2008, Frontiers in bioscience : a journal and virtual library.

[128]  R. Haser,et al.  Structure of a d(TGGGGT) quadruplex crystallized in the presence of Li+ ions. , 2007, Acta crystallographica. Section D, Biological crystallography.

[129]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[130]  B. Scheithauer,et al.  DNA microarrays , 2005, Endocrine.

[131]  Xiaogang Qu,et al.  Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation , 2006, Proceedings of the National Academy of Sciences.

[132]  D. Shangguan,et al.  Aptamers evolved from live cells as effective molecular probes for cancer study , 2006, Proceedings of the National Academy of Sciences.

[133]  M. Richter Electrochemiluminescence (ECL). , 2004, Chemical reviews.

[134]  Chunhai Fan,et al.  Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[135]  G. S. Wilson,et al.  Electrochemical Biosensors: Recommended Definitions and Classification , 1999, Biosensors & bioelectronics.

[136]  J. Feigon,et al.  Multistranded DNA structures. , 1999, Current opinion in structural biology.

[137]  V. Potaman,et al.  Triple-Helical Nucleic Acids , 1995, Springer New York.

[138]  S. Mirkin,et al.  Triplex DNA structures. , 1995, Annual review of biochemistry.

[139]  G. Manzini,et al.  Evidence for intramolecularly folded i-DNA structures in biologically relevant CCC-repeat sequences. , 1994, Nucleic acids research.

[140]  D. Miller,et al.  Structure and applications of intermolecular DNA triplexes. , 1992, The American journal of the medical sciences.

[141]  David M. Prescott,et al.  Inhibition of telomerase by G-quartet DMA structures , 1991, Nature.

[142]  D. Thiele,et al.  Four-stranded nucleic acid structures 25 years later: from guanosine gels to telomer DNA. , 1990, Journal of biomolecular structure & dynamics.

[143]  Aaron Klug,et al.  Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops , 1989, Nature.

[144]  B. Johnston,et al.  The S1-sensitive form of d(C-T)n.d(A-G)n: chemical evidence for a three-stranded structure in plasmids. , 1988, Science.

[145]  R. Wells,et al.  Intramolecular DNA triplexes in supercoiled plasmids. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[146]  N. Seeman,et al.  An immobile nucleic acid junction constructed from oligonucleotides , 1983, Nature.

[147]  Jacques H. van Boom,et al.  Molecular structure of a left-handed double helical DNA fragment at atomic resolution , 1979, Nature.

[148]  W. Lorenz,et al.  Zur anwendung der transformations—impedanzspektrometrie , 1975 .

[149]  H. R. Wilson,et al.  The molecular configuration of deoxyribonucleic acid , 1960 .

[150]  F. Crick,et al.  Genetical Implications of the Structure of Deoxyribonucleic Acid , 1953, Nature.