Cohomology of p-adic Analytic Groups

The purpose of this article is to give an exposition on the cohomology of compact p-adic analytic groups. The cohomology theory of profinite groups was initiated by J. Tate and developed by J-P. Serre [23] in the sixties, with applications to number theory. In his extraordinary work on p-adic analytic groups [17], M. Lazard also considered their cohomology and proved two striking theorems: Lazard’s first theorem states that a compact p-adic analytic group G is a virtual Poincare duality group; his second theorem states that the rational cohomology of G coincides with the G-stable cohomology of its associated \( {\mathbb{Q}_P}\) -Lie algebra L (G). Our main goal is to discuss these results of Lazard in the spirit of the treatment of the structure of p-adic analytic groups in [10]. We also wish to emphasize the close parallels with the theory of discrete duality groups. In order to achieve this goal we need to set up the appropriate homological algebra.

[1]  C. Curtis,et al.  Representation theory of finite groups and associated algebras , 1962 .

[2]  B. Eckmann,et al.  Groups with homological duality , 1973 .

[3]  Leonard Evens,et al.  Cohomology of groups , 1991, Oxford mathematical monographs.

[4]  J. May The cohomology of restricted Lie algevras and of Hopf Algebras : application to the Steenrod algebra , 1964 .

[5]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[6]  T. Weigel $p$-central groups and Poincare duality , 1999 .

[7]  D. Quillen,et al.  The Spectrum of an Equivariant Cohomology Ring: II , 1971 .

[8]  David A. Buchsbaum,et al.  Exact categories and duality , 1955 .

[9]  M. Lazard,et al.  Groupes analytiques p-adiques , 1965 .

[10]  H. Bandemer Schmetterer, L.: Introduction to Mathematical Statistics (Grundlehren der mathematischen Wissenschaften Bd. 2). Springer-Verlag, Berlin-Heidelberg-New York 1974. VII, 502 S., 11 Abb., DM 124,- , 1975 .

[11]  Andrew Pressley,et al.  QUANTUM GROUPS (Graduate Texts in Mathematics 155) , 1997 .

[12]  D. Benson Cohomology of groups and modules , 1991 .

[13]  Kenneth S. Brown,et al.  Cohomology of Groups , 1982 .

[14]  Jean-Pierre Serre,et al.  Sur la dimension cohomologique des groupes profinis , 1965 .

[15]  D. Benson,et al.  Representations and Cohomology , 1991 .

[16]  P. H. Kropholler,et al.  REPRESENTATIONS AND COHOMOLOGY I: Basic representation theory of finite groups and associative algebras , 1994 .

[17]  R. Ho Algebraic Topology , 2022 .

[18]  Armand Brumer,et al.  Pseudocompact algebras, profinite groups and class formations , 1966 .

[19]  P. Gabriel,et al.  Des catégories abéliennes , 1962 .

[20]  Cohomologie des groupes compacts totalement discontinus , 1960 .

[21]  John McCleary,et al.  User's Guide to Spectral Sequences , 1985 .

[22]  S. I. Gelʹfand,et al.  Methods of Homological Algebra , 1996 .

[23]  Jean-Louis Koszul,et al.  Homologie et cohomologie des algèbres de Lie , 1950 .