Nonlinear Dynamics and Chaos : Where do we go from here?

In keeping with the spirit of the Colston conference on Nonlinear Dynam-ics and Chaos, this chapter emphasizes ideas more than details, describingmy vision of how the bifurcation theory of multiple time scale systemswill unfold. Multiple time scale dynamical systems are rife with compli-cated phenomena. The subject has a complicated history that interweavesthree di erent viewpoints: nonstandard analysis, classical asymptotics andgeometric singular perturbation theory. My perspective is decidedly geo-metric but draws upon asymptotic analysis, recognizing the fundamentalcontributions rst expressed in the language of nonstandard analysis. Thesuccess of dynamical systems theory in elucidating patterns of bifurcationin generic systems with a single time scale motivates the goal here, namelyto extend this bifurcation theory to systems with two time scales. Thereare substantial obstacles to realizing this objective, both theoretical andcomputational. Consequently, the nal shape that the theory will take isstill fuzzy.It may seem strange to talk about computational barriers to a math-ematical theory, so I give some explanation for this. Much of the progress

[1]  E. M. Ortega,et al.  Drift instability of standing Faraday waves , 2002, Journal of Fluid Mechanics.

[2]  Edgar Knobloch,et al.  Outstanding problems in the theory of pattern formation , 2002 .

[3]  E. Knobloch,et al.  Simulations of oscillatory binary fluid convection in large aspect ratio containers. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[5]  T. K. Callahan,et al.  Long-wavelength instabilities of three-dimensional patterns. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  J. Fineberg,et al.  Secondary Instabilities of Hexagons: A Bifurcation Analysis of Experimentally Observed Faraday Wave Patterns , 2001, nlin/0108005.

[7]  E. Knobloch,et al.  Nearly inviscid Faraday waves in annular containers of moderately large aspect ratio , 2001 .

[8]  J. Dawes Hopf bifurcation on a square superlattice , 2001 .

[9]  John Guckenheimer,et al.  Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.

[10]  Scheel,et al.  Absolute versus convective instability of spiral waves , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  E. Knobloch,et al.  Noise-sustained structures due to convective instability in finite domains , 2000 .

[12]  Björn Sandstede,et al.  Absolute and Convective Instabilities of Waves on Unbounded and Large Bounded Domains , 2022 .

[13]  T. K. Callahan,et al.  Pattern Formation in Weakly Anisotropic Systems , 2000 .

[14]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[15]  Ian Stewart,et al.  Target Patterns and Spirals in Planar Reaction-Diffusion Systems , 2000, J. Nonlinear Sci..

[16]  M. Silber,et al.  Spatial period-multiplying instabilities of hexagonal Faraday waves , 2000, nlin/0005066.

[17]  L. Kramer,et al.  The stability of standing waves with small group velocity , 2000 .

[18]  E. Knobloch,et al.  Dynamics of counterpropagating waves in parametrically forced systems , 2000 .

[19]  J. Dockery,et al.  Dynamics of a reaction-diffusion equation with nonlocal inhibition , 1999 .

[20]  I. Melbourne Steady-state bifurcation with Euclidean symmetry , 1999 .

[21]  M. Renardy A note on bifurcation problems in large containers , 1999 .

[22]  Markus Bär,et al.  Alternative Scenarios of Spiral Breakup in a Reaction-Diffusion Model with Excitable and Oscillatory Dynamics. , 1999 .

[23]  Arnd Scheel,et al.  Bifurcation to spiral waves in reaction-diffusion systems , 1998 .

[24]  Stephen L. Judd,et al.  Simple and superlattice Turing patterns in reaction-diffusion systems: bifurcation, bistability, and parameter collapse , 1998, patt-sol/9807002.

[25]  J. Moehlis,et al.  Forced Symmetry Breaking as a Mechanism for Bursting , 1998 .

[26]  Edgar Knobloch,et al.  Breakup of Spiral Waves into Chemical Turbulence , 1998 .

[27]  Lorenz Kramer,et al.  The cubic complex Ginzburg-Landau equation for a backward bifurcation , 1998 .

[28]  Arshad Kudrolli,et al.  Superlattice patterns in surface waves , 1998, chao-dyn/9803016.

[29]  Edgar Knobloch,et al.  Convective and absolute instabilities of fluid flows in finite geometry , 1998 .

[30]  I. Melbourne Derivation of the Time-Dependent Ginzburg-Landau Equation on the Line , 1998 .

[31]  N. Balmforth,et al.  Long-Wave Instability in Marginally Stable Shear Flows , 1997 .

[32]  Maxi San Miguel,et al.  Noise-Sustained Convective Structures in Nonlinear Optics , 1997 .

[33]  E. Knobloch,et al.  Damping of nearly inviscid water waves , 1997 .

[34]  Arnd Scheel,et al.  Subcritical Bifurcation to Infinitely Many Rotating Waves , 1997 .

[35]  M. Silber,et al.  Nonlinear Competition between Small and Large Hexagonal Patterns , 1997, patt-sol/9710004.

[36]  T. K. Callahan,et al.  Symmetry-breaking bifurcations on cubic lattices , 1997 .

[37]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[38]  M. Luecke,et al.  Noise sustained pattern growth: Bulk versus boundary effects , 1997, patt-sol/9708001.

[39]  B. Eckhardt,et al.  Fractal Stability Border in Plane Couette Flow , 1997, chao-dyn/9704018.

[40]  N. Balmforth,et al.  Dynamics of vorticity defects in shear , 1997, Journal of Fluid Mechanics.

[41]  Philip Holmes,et al.  The limited effectiveness of normal forms: a critical review and extension of local bifurcation studies of the Brusselator PDE , 1997 .

[42]  M. S. Miguel,et al.  Noise-sustained structures in coupled complex Ginzburg-Landau equations for a convectively unstable system. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Schmitz,et al.  Spatially periodic modulated Rayleigh-Bénard convection. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  Freddy Dumortier,et al.  Canard Cycles and Center Manifolds , 1996 .

[45]  A. Landsberg,et al.  Oscillatory bifurcation with broken translation symmetry. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  E. Knobloch,et al.  Complex dynamics in the Hopf bifurcation with broken translation symmetry , 1996 .

[47]  George Haller,et al.  Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schro¨dinger equation , 1995 .

[48]  P. Umbanhowar,et al.  Hexagons, kinks, and disorder in oscillated granular layers. , 1995, Physical review letters.

[49]  Hettel,et al.  Parity breaking bifurcation in inhomogeneous systems. , 1995, Physical review letters.

[50]  George Haller,et al.  N-pulse homoclinic orbits in perturbations of resonant hamiltonian systems , 1995 .

[51]  J. Swift,et al.  Traveling wave instability in sustained double-diffusive convection , 1994 .

[52]  R. D. Pierce,et al.  On the validity of mean-field amplitude equations for counterpropagating wavetrains , 1994, patt-sol/9411002.

[53]  W. S. Edwards,et al.  Patterns and quasi-patterns in the Faraday experiment , 1994, Journal of Fluid Mechanics.

[54]  A. Y. Kolesov,et al.  Asymptotic Methods in Singularly Perturbed Systems , 1994 .

[55]  Alan C. Newell,et al.  Towards a universal theory for natural patterns , 1994 .

[56]  J. Crawford,et al.  Universal Trapping Scaling on the Unstable Manifold for a Collisionless Electrostatic Mode. , 1994, Physical review letters.

[57]  E. Knobloch,et al.  Pattern selection in three-dimensional magnetoconvection , 1994 .

[58]  Mikhail M. Sushchik,et al.  The Eckhaus instability in hexagonal patterns , 1994 .

[59]  G. Schneider Error estimates for the Ginzburg-Landau approximation , 1994 .

[60]  R. Benguria,et al.  Validity of the linear speed selection mechanism for fronts of the nonlinear diffusion equation. , 1994, Physical review letters.

[61]  R. D. Pierce,et al.  On the modulational stability of traveling and standing water waves , 1994 .

[62]  Ulrich Parlitz,et al.  BIFURCATION STRUCTURE OF THE DRIVEN VAN DER POL OSCILLATOR , 1993 .

[63]  J. Crawford,et al.  Amplitude expansions for instabilities in populations of globally-coupled oscillators , 1993, patt-sol/9310005.

[64]  Gunaratne Complex spatial patterns on planar continua. , 1993, Physical review letters.

[65]  R. Hoyle Long wavelength instabilities of square patterns , 1993 .

[66]  John Guckenheimer,et al.  A Dynamical Simulation Facility for Hybrid Systems , 1993, Hybrid Systems.

[67]  J. E. Pearson Complex Patterns in a Simple System , 1993, Science.

[68]  M. Graham,et al.  Patterns of temperature pulses on electrically heated catalytic ribbons , 1993 .

[69]  J. Gollub,et al.  Hidden symmetries of parametrically forced waves , 1993 .

[70]  K. L. Babcock,et al.  Stability and noise in Taylor-Couette flow with through-flow , 1992 .

[71]  Reiner Lauterbach,et al.  Heteroclinic cycles in dynamical systems with broken spherical symmetry , 1992 .

[72]  Yih-Yuh Chen Boundary conditions and linear analysis of finite-cell Rayleigh–Bénard convection , 1992, Journal of Fluid Mechanics.

[73]  L. Bonilla,et al.  Gunn instability in finite samples of GaAs. II: Oscillatory states in long samples , 1992 .

[74]  E. Knobloch,et al.  Hopf Bifurcation with Broken Reflection Symmetry in Rotating Rayleigh-Bénard Convection , 1992 .

[75]  R. Pego,et al.  On asymptotic stability of solitary waves , 1992 .

[76]  Steinberg,et al.  Noise-modulated propagating pattern in a convectively unstable system. , 1991, Physical review letters.

[77]  A. van Harten,et al.  On the validity of the Ginzburg-Landau equation , 1991 .

[78]  Edgar Knobloch,et al.  Hopf bifurcation on a square lattice , 1991 .

[79]  Crawford,et al.  Surface waves in nonsquare containers with square symmetry. , 1991, Physical review letters.

[80]  Kramer,et al.  Small-amplitude periodic and chaotic solutions of the complex Ginzburg-Landau equation for a subcritical bifurcation. , 1991, Physical review letters.

[81]  G. Dangelmayr,et al.  Hopf bifurcation with broken circular symmetry , 1991 .

[82]  Brand,et al.  Simple model for the Bénard instability with horizontal flow near threshold. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[83]  E. Knobloch,et al.  Coupled NLS equations for counter propagating waves in systems with reflection symmetry , 1991 .

[84]  É. Benoît,et al.  Canards et enlacements , 1990 .

[85]  Martin Krupa,et al.  Bifurcations of relative equilibria , 1990 .

[86]  G. Iooss,et al.  Bifurcation of spatially quasi-periodic solutions in hydrodynamic stability problems , 1990 .

[87]  Jonathan Swinton,et al.  Stability of travelling pulse solutions to a laser equation , 1990 .

[88]  S. Fauve,et al.  Oscillatory Phase Modulation of Parametrically Forced Surface Waves , 1989 .

[89]  R. Deissler,et al.  External noise and the origin and dynamics of structure in convectively unstable systems , 1989 .

[90]  Williams,et al.  Nonlinear competition between waves on convective rolls. , 1989, Physical review. A, General physics.

[91]  E. Knobloch,et al.  On degenerate Hopf bifurcation with broken O(2) symmetry , 1988 .

[92]  S. Fauve,et al.  Localized structures generated by subcritical instabilities , 1988 .

[93]  Sullivan,et al.  Nonperiodic time dependence at the onset of convection in a binary liquid mixture. , 1988, Physical review. A, General physics.

[94]  J. Swift,et al.  Hopf bifurcation with the symmetry of the square , 1988 .

[95]  F. Elmer Nonlinear and nonlocal dynamics of spatially extended systems: stationary states, bifurcations and stability , 1988 .

[96]  Knobloch,et al.  Traveling waves in large-aspect-ratio thermosolutal convection. , 1988, Physical review. A, General physics.

[97]  M. Golubitsky,et al.  A classification of degenerate Hopf bifurcations with O(2) symmetry , 1987 .

[98]  J. Grasman Asymptotic Methods for Relaxation Oscillations and Applications , 1987 .

[99]  R. Deissler Spatially growing waves, intermittency, and convective chaos in an open-flow system , 1987 .

[100]  Harry L. Swinney,et al.  Flow regimes in a circular Couette system with independently rotating cylinders , 1986, Journal of Fluid Mechanics.

[101]  J. Rinzel Excitation dynamics: insights from simplified membrane models. , 1985, Federation proceedings.

[102]  Marc Diener,et al.  The canard unchainedor how fast/slow dynamical systems bifurcate , 1984 .

[103]  Philip Hall,et al.  Evolution equations for Taylor vortices in the small-gap limit , 1984 .

[104]  Martin Golubitsky,et al.  Symmetries and pattern selection in Rayleigh-Bénard convection , 1984 .

[105]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[106]  P. Hagan,et al.  Target patterns in reaction-diffusion systems , 1981 .

[107]  N. K. Rozov,et al.  Differential Equations with Small Parameters and Relaxation Oscillations , 1980 .

[108]  J. Keener Chaotic behavior in piecewise continuous difference equations , 1980 .

[109]  R. C. DiPrima,et al.  The Eckhaus and Benjamin-Feir resonance mechanisms , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[110]  J. Flaherty,et al.  Frequency Entrainment of a Forced van der pol Oscillator. , 1977 .

[111]  K. Stewartson,et al.  On three-dimensional packets of surface waves , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[112]  J. Kevorkian,et al.  A Perturbation Method for Hyperbolic Equations with Small Nonlinearities , 1972 .

[113]  S. Smale Differentiable dynamical systems , 1967 .

[114]  F. Busse On the Stability of Two-Dimensional Convection in a Layer Heated from Below , 1967 .

[115]  J. Littlewood On non-linear differential equations of the second order: IV. The general equation $$\ddot y + kf\left( y \right)\dot y + g\left( y \right) = bkp\left( \varphi \right)$$ , φ=t+α, φ=t+α , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[116]  J. E. Littlewood,et al.  On Non-Linear Differential Equations of the Second Order: II. The Equation .. y + kf(y, . y + g(y, k) = p(t) = p 1 (t) + kp 2 (t); k > 0, f(y) > 1 , 1947 .

[117]  E. Knobloch,et al.  Three-dimensional Marangoni-Benard flows in square and nearly square containers , 2001 .

[118]  J. D. Lucat Amplitude equations for travelling wave convection , 2001 .

[119]  Jeff Moehlis,et al.  Bursts in oscillatory systems with broken D 4 symmetry , 2000 .

[120]  Martin Golubitsky,et al.  Pattern Formation in Continuous and Coupled Systems , 1999 .

[121]  G. Haller,et al.  Homoclinic jumping in the perturbed nonlinear Schrödinger equation , 1999 .

[122]  Stefan C. Müller,et al.  Evolution of spontaneous structures in dissipative continuous systems , 1998 .

[123]  C. Martel,et al.  Dynamics of a hyperbolic system that applies at the onset of the oscillatory instability , 1998 .

[124]  E. Knobloch,et al.  CONFINED STATES IN LARGE-ASPECT-RATIO THERMOSOLUTAL CONVECTION , 1998 .

[125]  P. Umbanhowar,et al.  Localized excitations in a vertically vibrated granular layer , 1996, Nature.

[126]  Q. Ouyang,et al.  Transition from spirals to defect turbulence driven by a convective instability , 1996, Nature.

[127]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[128]  Deissler Thermally sustained structure in convectively unstable systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[129]  Alan C. Newell,et al.  ORDER PARAMETER EQUATIONS FOR PATTERNS , 1993 .

[130]  B. Matkowsky,et al.  Stability of plane wave solutions of complex Ginzburg-Landau equations , 1993 .

[131]  H. Swinney,et al.  Transition from a uniform state to hexagonal and striped Turing patterns , 1991, Nature.

[132]  Ryo Kobayashi,et al.  Higher-dimensional localized patterns in excitable media , 1989 .

[133]  V. S. Gils Hopf bifurcation and symmetry: travelling and standing waves on the circle , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[134]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[135]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[136]  Johan Grasman,et al.  Asymptotic Methods for Relaxation Oscillations , 1978 .

[137]  N. Levinson,et al.  A Second Order Differential Equation with Singular Solutions , 1949 .