Crystal structure of the Clostridium limosum C3 exoenzyme

[1]  A. Pautsch,et al.  C3 exoenzymes, novel insights into structure and action of Rho-ADP-ribosylating toxins , 2007, Naunyn-Schmiedeberg's Archives of Pharmacology.

[2]  K. Aktories,et al.  Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme. , 2006, Biochemistry.

[3]  Klaus Aktories,et al.  Bacterial cytotoxins: targeting eukaryotic switches , 2005, Nature Reviews Microbiology.

[4]  Jianjun Sun,et al.  How bacterial ADP-ribosylating toxins recognize substrates , 2004, Nature Structural &Molecular Biology.

[5]  J. Sun,et al.  Pseudomonas aeruginosa ExoS and ExoT. , 2004, Reviews of physiology, biochemistry and pharmacology.

[6]  K. Aktories,et al.  Rho-modifying C3-like ADP-ribosyltransferases. , 2004, Reviews of physiology, biochemistry and pharmacology.

[7]  H. R. Evans,et al.  The Crystal Structure of C3stau2 from Staphylococcus aureus and Its Complex with NAD* , 2003, Journal of Biological Chemistry.

[8]  Richard J Morris,et al.  ARP/wARP and automatic interpretation of protein electron density maps. , 2003, Methods in enzymology.

[9]  J. Teulon,et al.  NAD Binding Induces Conformational Changes in Rho ADP-ribosylating Clostridium botulinum C3 Exoenzyme* , 2002, The Journal of Biological Chemistry.

[10]  R. Braren,et al.  The family of toxin‐related ecto‐ADP‐ribosyltransferases in humans and the mouse , 2002, Protein science : a publication of the Protein Society.

[11]  J. Tainer,et al.  The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. , 2002, International journal of medical microbiology : IJMM.

[12]  G. S. Chhatwal,et al.  A Novel C3-like ADP-ribosyltransferase fromStaphylococcus aureus Modifying RhoE and Rnd3* , 2001, The Journal of Biological Chemistry.

[13]  J. Tainer,et al.  Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis. , 2001, Journal of molecular biology.

[14]  I. Just,et al.  Bacterial protein toxins inhibiting low-molecular-mass GTP-binding proteins. , 2001, International journal of medical microbiology : IJMM.

[15]  K. Aktories,et al.  Recognition of RhoA by Clostridium botulinum C3 Exoenzyme* , 2000, The Journal of Biological Chemistry.

[16]  D E McRee,et al.  XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. , 1999, Journal of structural biology.

[17]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[18]  K. Aktories,et al.  Active site mutation of the C3-like ADP-ribosyltransferase from Clostridium limosum--analysis of glutamic acid 174. , 1996, Biochemistry.

[19]  J. Vandekerckhove,et al.  Rho-ADP-ribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NAD-binding site. , 1995, Biochemistry.

[20]  J. Barbieri,et al.  The family of bacterial ADP-ribosylating exotoxins , 1995, Clinical microbiology reviews.

[21]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[22]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[23]  J. Vandekerckhove,et al.  Purification and characterization of an ADP-ribosyltransferase produced by Clostridium limosum. , 1992, The Journal of biological chemistry.

[24]  K. Matsumoto,et al.  A novel epidermal cell differentiation inhibitor (EDIN): purification and characterization from Staphylococcus aureus. , 1990, Biochemical and biophysical research communications.

[25]  A. Hall,et al.  Microinjection of recombinant p21rho induces rapid changes in cell morphology , 1990, The Journal of cell biology.

[26]  S. Narumiya,et al.  Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. , 1989, The Journal of biological chemistry.

[27]  P. Boquet,et al.  The mammalian G protein rhoC is ADP‐ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. , 1989, The EMBO journal.

[28]  A. Hall,et al.  The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. , 1989, Biochemical and biophysical research communications.

[29]  K. Aktories,et al.  Clostridium botulinum type C produces a novel ADP‐ribosyltransferase distinct from botulinum C2 toxin , 1987, FEBS letters.