A new motion parameter estimation algorithm based on the continuous wavelet transform

This paper presents a novel motion parameter estimation (ME) algorithm based on the spatio-temporal continuous wavelet transform (CWT). The multidimensional nature of the CWT allows for the definition of a multitude of energy densities by integrating over a subset of the CWT parameter space. Three energy densities are used to estimate motion parameters by sequentially optimizing a state vector composed of velocity, position, and size parameters. This optimization is performed on a frame-by-frame basis allowing the algorithm to track moving objects. The ME algorithm is designed to address real world challenges encountered in the defense industry and traffic monitoring scenarios, such as attaining robust performance in noise and handling obscuration and crossing object trajectories.

[1]  Larry B. Stotts,et al.  Optical moving target detection with 3-D matched filtering , 1988 .

[2]  A. Darzi,et al.  Motion analysis , 1986 .

[3]  Mark J. T. Smith,et al.  Tracking ballistic missile warheads using a generalized motion model , 1997, Defense, Security, and Sensing.

[4]  Mark J. T. Smith,et al.  Spatio-temporal wavelet transforms for motion tracking , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[5]  N. C. Mohanty Computer Tracking of Moving Point Targets in Space , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Harry Wechsler,et al.  Derivation of optical flow using a spatiotemporal-Frequency approach , 1987, Comput. Vis. Graph. Image Process..

[7]  Alan M. Wood,et al.  Motion analysis , 1986 .

[8]  J. Antoine,et al.  Coherent states and their generalizations - A mathematical overview , 1995 .

[9]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[10]  Georgios B. Giannakis,et al.  Spatio-temporal approach for time-varying image motion estimation , 1994, Proceedings of 1st International Conference on Image Processing.

[11]  Richard D. Holben Moving Target Identification (MTI) Algorithm For Passive Sensors , 1980, Photonics West - Lasers and Applications in Science and Engineering.

[12]  Daniel J. Woods,et al.  Optimization on Microcomputers: The Nelder-Mead Simplex Algorithm , 1985 .

[13]  Riccardo Leonardi,et al.  Determining the optical flow using wavelet coefficients , 1997, Electronic Imaging.

[14]  Yair Barniv,et al.  Dynamic Programming Solution for Detecting Dim Moving Targets , 1985, IEEE Transactions on Aerospace and Electronic Systems.

[15]  I. Reed,et al.  A recursive moving-target-indication algorithm for optical image sequences , 1990 .

[16]  G. Granlund,et al.  Estimation of velocity, acceleration and disparity in time sequences , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[17]  K. J. Ray Liu,et al.  DCT-based motion estimation , 1998, IEEE Trans. Image Process..

[18]  Murat Kunt,et al.  Object tracking based on temporal and spatial information , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[19]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[20]  R.M. Gagliardi,et al.  Application of Three-Dimensional Filtering to Moving Target Detection , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[21]  Mark J. T. Smith,et al.  Spatio-temporal continuous wavelets applied to missile warhead detection and tracking , 1997 .

[22]  A. Murat Tekalp,et al.  Digital Video Processing , 1995 .

[23]  Mark J. T. Smith,et al.  Spatiotemporal continuous wavelets applied to missile warhead detection and tracking , 1997, Electronic Imaging.

[24]  Christof Koch,et al.  An adaptive multi-scale approach for estimating optical flow: computational theory and physiological implementation , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[25]  Benjamin Friedlander,et al.  A Frequency Domain Algorithm for Multiframe Detection and Estimation of Dim Targets , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Gilad Adiv,et al.  Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[28]  Steven K. Rogers,et al.  Computing optical flow using a discrete, spatio-temporal, wavelet multiresolution analysis , 1994, Defense, Security, and Sensing.