Evaluating Precipitation Estimates from Eta, TRMM and CHRIPS Data in the South-Southeast Region of Minas Gerais State - Brazil

Precipitation estimates derived from the Eta model and from TRMM (Tropical Rainfall Measuring Mission) and CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) remotely sensed data were compared to the precipitation data of the INMET (National Institute of Meteorology) meteorological stations in the south-southeast region of Minas Gerais state, Brazil, in the period between July 2009 and June 2015. Then, information about evapotranspiration (ETR), water deficit (DEF), and water surplus (EXC) was obtained from the precipitation data, using the sequential water balance (SWB) separately for each type of precipitation data (INMET, TRMM, Eta, and CHIRPS). Subsequently, the components of the SWB were comparatively analyzed. The results indicate that all three products overestimate rainfall. The strongest relationships between the INMET data and the estimated data were observed for the TRMM, in terms of precipitation estimates, as well as DEF, EXC, and ETR components. The Eta precipitation estimates are overestimated relative to those from INMET, resulting in underestimation of the water deficit (DEFETA) and overestimation of evapotranspiration (ETRETA). In general, the CHIRPS data presented a pattern similar to the station data, though statistical analyses were lower than those of the TRMM data.

[1]  D. Goodrich,et al.  Trends in water balance components across the Brazilian Cerrado , 2014 .

[2]  H. Barbosa,et al.  Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil , 2017 .

[3]  D. R. Nielsen,et al.  General procedure to initialize the cyclic soil water balance by the Thornthwaite and Mather method , 2010 .

[4]  Christian Onof,et al.  A Comparative Performance Analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for Hydrological Applications over Andean–Amazon River Basins , 2014 .

[5]  Sandra Morelli,et al.  An upgraded version of the Eta model , 2012, Meteorology and Atmospheric Physics.

[6]  Pamela L. Nagler,et al.  Integrating Remote Sensing and Ground Methods to Estimate Evapotranspiration , 2007 .

[7]  D. Rubin,et al.  ENVIRONMENTAL INFORMATION , 1973 .

[8]  T. Black The new NMC mesoscale Eta Model: description and forecast examples , 1994 .

[9]  Gabriel Constantino Blain,et al.  Validação de dados termopluviométricos obtidos via sensoriamento remoto para o Estado de São Paulo , 2013 .

[10]  Pietro Ceccato,et al.  Evaluating Detection Skills of Satellite Rainfall Estimates over Desert Locust Recession Regions , 2010 .

[11]  Marcio Cataldi,et al.  Refinamento estatístico das previsões horárias de temperatura a 2 m do modelo eta em estações do nordeste do Brasil , 2007 .

[12]  Qiuhong Tang,et al.  Estimating the water budget of major US river basins via remote sensing , 2010 .

[13]  S. Orlandini,et al.  Raindrop Size Distribution and Soil Erosion , 2012 .

[14]  Denis A. Hughes,et al.  Comparison of satellite rainfall data with observations from gauging station networks , 2006 .

[15]  S. Yeboah,et al.  Crop modeling: A tool for agricultural research – A review , 2013 .

[16]  Adrianos Retalis,et al.  Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period , 2016 .

[17]  Zheng Duan,et al.  Assessment of GPM and TRMM Precipitation Products over Singapore , 2017, Remote. Sens..

[18]  Sergio H. Franchito,et al.  Validation of TRMM precipitation radar monthly rainfall estimates over Brazil , 2009 .

[19]  Ronalton Evandro Machado,et al.  Calibração de modelo para a simulação de vazão e de fósforo total nas sub-bacias dos Rios Conrado e Pinheiro - Pato Branco (PR) , 2010 .

[20]  Hendrik Boogaard,et al.  Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique , 2015, Remote. Sens..

[21]  Joseph L. Awange,et al.  An evaluation of high‐resolution gridded precipitation products over Bhutan (1998–2012) , 2016 .

[22]  J. Filho,et al.  Limites na utilização de um modelo de balanço hídrico decendial em função da capacidade de água disponível no solo - DOI: 10.4025/actasciagron.v30i2.1721 , 2008 .

[23]  Elisabete Caria Moraes,et al.  Avaliação dos Dados de Precipitação Estimados pelo Satélite TRMM para o Brasil , 2013 .

[24]  B. T. Rudorff,et al.  Estimativa da produtividade de café com base em um modelo agrometeorológico-espectral , 2010 .

[25]  J. Stape,et al.  Köppen's climate classification map for Brazil , 2013 .

[26]  J. A. S. B. Monteiro Agrometeorologia dos cultivos : o fator meteorológico na produção agrícola , 2009 .

[27]  M. L. Lopes-Assad,et al.  Aptidão agrícola de terras com estimativa de risco climático para a cultura do milho utilizando geoprocessamento , 2002 .

[28]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[29]  Marcos Carrasco-Benavides,et al.  Parameterization of the Satellite-Based Model (METRIC) for the Estimation of Instantaneous Surface Energy Balance Components over a Drip-Irrigated Vineyard , 2014, Remote. Sens..

[30]  Boleslo E. Romero,et al.  A quasi-global precipitation time series for drought monitoring , 2014 .

[31]  James W. Jones,et al.  POTENTIAL USES AND LIMITATIONS OF CROP MODELS , 1996 .

[32]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .

[33]  M. Jakob,et al.  Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows , 2014 .

[34]  M. Mccabe,et al.  Closing the terrestrial water budget from satellite remote sensing , 2009 .

[35]  D. Dourado-Neto,et al.  Comparison between climatological and field water balances for a coffee crop , 2007 .