Sampling Protein Energy Landscapes – The Quest for Efficient Algorithms

Computer simulations aim to become virtual microscopes that can probe the working of cells on a molecular level. One of the remaining obstacles is still poor sampling. This chapter reviews strategies for faster sampling and discusses their limitations. Recent applications to protein folding document the utility of the described techniques.

[1]  A. Schug,et al.  Energy landscape paving simulations of the trp-cage protein. , 2005, The Journal of chemical physics.

[2]  D. Frenkel,et al.  From Algorithms to Applications , 2007 .

[3]  Ulrich H E Hansmann,et al.  Efficient sampling of protein structures by model hopping. , 2005, Physical review letters.

[4]  N. Go,et al.  Ring Closure and Local Conformational Deformations of Chain Molecules , 1970 .

[5]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Ulrich H E Hansmann,et al.  Global optimization by energy landscape paving. , 2002, Physical review letters.

[7]  P. S. Kim,et al.  Context-dependent secondary structure formation of a designed protein sequence , 1996, Nature.

[8]  D. Baker,et al.  Design of a Novel Globular Protein Fold with Atomic-Level Accuracy , 2003, Science.

[9]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[10]  Ulrich H. E. Hansmann,et al.  Free‐energy‐driven folding and thermodynamics of the 67‐residue protein GS‐α3W—A large‐scale Monte Carlo study , 2009, J. Comput. Chem..

[11]  Ulrich H E Hansmann,et al.  Exploring protein energy landscapes with hierarchical clustering. , 2005, International journal of quantum chemistry.

[12]  M. Deem,et al.  Analytical rebridging Monte Carlo: Application to cis/trans isomerization in proline-containing, cyclic peptides , 1999, physics/9904057.

[13]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[14]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[15]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[16]  Yuko Okamoto,et al.  Prediction of peptide conformation by multicanonical algorithm: New approach to the multiple‐minima problem , 1993, J. Comput. Chem..

[17]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[18]  M. Troyer,et al.  Optimized parallel tempering simulations of proteins. , 2006, The Journal of chemical physics.

[19]  Leslie L. Chavez,et al.  Topological frustration and the folding of interleukin-1 beta. , 2006, Journal of molecular biology.

[20]  Bernd A Berg Metropolis importance sampling for rugged dynamical variables. , 2003, Physical review letters.

[21]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[22]  Ulrich H E Hansmann,et al.  Generalized ensemble and tempering simulations: a unified view. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Ulrich H E Hansmann,et al.  Folding proteins by first-passage-times-optimized replica exchange. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[25]  G. Favrin,et al.  Monte Carlo update for chain molecules: Biased Gaussian steps in torsional space , 2001, cond-mat/0103580.

[26]  Christodoulos A. Floudas,et al.  Prediction of Oligopeptide Conformations via Deterministic Global Optimization , 1997, J. Glob. Optim..

[27]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[28]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[29]  U. Hansmann Parallel tempering algorithm for conformational studies of biological molecules , 1997, physics/9710041.

[30]  W. Wenzel,et al.  Stochastic Tunneling Approach for Global Minimization of Complex Potential Energy Landscapes , 1999 .

[31]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[32]  Yuko Okamoto,et al.  The Generalized-Ensemble Approach for Protein Folding Simulations , 1999 .

[33]  U H Hansmann,et al.  New Monte Carlo algorithms for protein folding. , 1999, Current opinion in structural biology.

[34]  Ulrich H E Hansmann,et al.  Simulation of Top7-CFr: A transient helix extension guides folding , 2008, Proceedings of the National Academy of Sciences.

[35]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[36]  Shankar Kumar,et al.  Method for free‐energy calculations using iterative techniques , 1996 .

[37]  W. Nadler,et al.  Optimized explicit-solvent replica exchange molecular dynamics from scratch. , 2008, The journal of physical chemistry. B.

[38]  Ulrich H. E. Hansmann,et al.  Protein folding in silico: an overview , 2003, Comput. Sci. Eng..

[39]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[40]  O. G. Mouritsen,et al.  Efficient Monte Carlo Sampling by direct flattening of free energy barriers , 1999 .

[41]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[42]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[43]  D. Baker,et al.  Mis-translation of a computationally designed protein yields an exceptionally stable homodimer: implications for protein engineering and evolution. , 2006, Journal of molecular biology.

[44]  A. Fersht,et al.  Is there a unifying mechanism for protein folding? , 2003, Trends in biochemical sciences.

[45]  Y. Okamoto,et al.  Molecular dynamics, Langevin, and hybrid Monte Carlo simulations in multicanonical ensemble , 1996, physics/9710018.

[46]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[48]  Y. Okamoto,et al.  Finite-size scaling of helix–coil transitions in poly-alanine studied by multicanonical simulations , 1998 .

[49]  Yuko Okamoto,et al.  Comparative Study of Multicanonical and Simulated Annealing Algorithms in the Protein Folding Problem , 1994 .

[50]  U. Hansmann Protein folding simulations in a deformed energy landscape , 1999, physics/0001028.

[51]  A. Lyubartsev,et al.  New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles , 1992 .

[52]  B. Pendleton,et al.  Hybrid Monte Carlo simulations theory and initial comparison with molecular dynamics , 1993 .

[53]  E. Mello,et al.  The fluctuation-dissipation theorem in the framework of the Tsallis statistics , 1994 .

[54]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Jacek Klinowski,et al.  Taboo Search: An Approach to the Multiple Minima Problem , 1995, Science.

[56]  Valerie Daggett,et al.  Molecular dynamics simulations of the protein unfolding/folding reaction. , 2002, Accounts of chemical research.

[57]  Ajay K. Royyuru,et al.  Blue Gene: A vision for protein science using a petaflop supercomputer , 2001, IBM Syst. J..