On the Parameterized Complexity of Computing Balanced Partitions in Graphs

A balanced partition is a clustering of a graph into a given number of equal-sized parts. For instance, the Bisection problem asks to remove at most k edges in order to partition the vertices into two equal-sized parts. We prove that Bisection is FPT for the distance to constant cliquewidth if we are given the deletion set. This implies FPT algorithms for some well-studied parameters such as cluster vertex deletion number and feedback vertex set. However, we show that Bisection does not admit polynomial-size kernels for these parameters. For the VertexBisection problem, vertices need to be removed in order to obtain two equal-sized parts. We show that this problem is FPT for the number of removed vertices k if the solution cuts the graph into a constant number c of connected components. The latter condition is unavoidable, since we also prove that VertexBisection is W[1]-hard w.r.t. (k,c). Our algorithms for finding bisections can easily be adapted to finding partitions into d equal-sized parts, which entails additional running time factors of nO(d). We show that a substantial speed-up is unlikely since the corresponding task is W[1]-hard w.r.t. d, even on forests of maximum degree two. We can, however, show that it is FPT for the vertex cover number.

[1]  Frank Thomson Leighton,et al.  Graph Bisection Algorithms with Good Average Case Behavior , 1984, FOCS.

[2]  Michael R. Fellows,et al.  What Makes Equitable Connected Partition Easy , 2009, IWPEC.

[3]  Vipin Kumar,et al.  A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering , 1998, J. Parallel Distributed Comput..

[4]  Peter Widmayer,et al.  An O(n^4) time algorithm to compute the bisection width of solid grid graphs , 2011 .

[5]  Harald Räcke,et al.  Optimal hierarchical decompositions for congestion minimization in networks , 2008, STOC.

[6]  Luca Foschini,et al.  Balanced Partitions of Trees and Applications , 2012, Algorithmica.

[7]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[8]  Egon Wanke,et al.  How to Solve NP-hard Graph Problems on Clique-Width Bounded Graphs in Polynomial Time , 2001, WG.

[9]  Andrew V. Goldberg,et al.  Exact Combinatorial Branch-and-Bound for Graph Bisection , 2012, ALENEX.

[10]  V. Rich Personal communication , 1989, Nature.

[11]  Barry O'Sullivan,et al.  Finding small separators in linear time via treewidth reduction , 2011, TALG.

[12]  Michal Pilipczuk,et al.  An O(c^k n) 5-Approximation Algorithm for Treewidth , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[13]  Andreas Emil Feldmann,et al.  Fast balanced partitioning is hard even on grids and trees , 2011, Theor. Comput. Sci..

[14]  Peter Arbenz,et al.  Multi-level mu -Finite Element Analysis for Human Bone Structures , 2006, PARA.

[15]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[16]  Manfred Wiegers The k-section of Treewidth Restricted Graphs , 1990, MFCS.

[17]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[18]  Peter Widmayer,et al.  An $$O(n^4)$$O(n4) Time Algorithm to Compute the Bisection Width of Solid Grid Graphs , 2014, Algorithmica.

[19]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[20]  Jan Kratochvíl,et al.  Cluster Vertex Deletion: A Parameterization between Vertex Cover and Clique-Width , 2012, MFCS.

[21]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[22]  W. Marsden I and J , 2012 .

[23]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[24]  Michal Pilipczuk,et al.  Minimum bisection is fixed parameter tractable , 2013, STOC.

[25]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[26]  Dániel Marx,et al.  Parameterized graph separation problems , 2004, Theor. Comput. Sci..

[27]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[28]  Andrew M. Peck,et al.  Partitioning Planar Graphs , 1992, SIAM J. Comput..

[29]  Sang-il Oum,et al.  Approximating rank-width and clique-width quickly , 2005, TALG.

[30]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[31]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[32]  Petr A. Golovach,et al.  Algorithmic lower bounds for problems parameterized by clique-width , 2010, SODA '10.

[33]  Frank Thomson Leighton,et al.  A Framework for Solving VLSI Graph Layout Problems , 1983, J. Comput. Syst. Sci..

[34]  Konstantin Andreev,et al.  Balanced Graph Partitioning , 2004, SPAA '04.

[35]  Dániel Marx,et al.  Parameterized Complexity and Approximation Algorithms , 2008, Comput. J..

[36]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[37]  Hans L. Bodlaender,et al.  Kernelization: New Upper and Lower Bound Techniques , 2009, IWPEC.

[38]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[39]  Klaus Jansen,et al.  Bin packing with fixed number of bins revisited , 2013, J. Comput. Syst. Sci..

[40]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[41]  Ton Kloks,et al.  New Algorithms for k-Face Cover, k-Feedback Vertex Set, and k -Disjoint Cycles on Plane and Planar Graphs , 2002, WG.

[42]  Fedor V. Fomin,et al.  Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[43]  Andrew V. Goldberg,et al.  Customizable Route Planning , 2011, SEA.

[44]  Robert Malcolm Macgregor,et al.  On partitioning a graph: a theoretical and empirical study. , 1978 .

[45]  A KhotSubhash,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative-Type Metrics into ℓ1 , 2015 .

[46]  Peter Widmayer,et al.  An $\mathcal{O}(n^4)$ Time Algorithm to Compute the Bisection Width of Solid Grid Graphs , 2011, ESA.

[47]  René van Bevern,et al.  On the Parameterized Complexity of Computing Graph Bisections , 2013, WG.

[48]  L. Sunil Chandran,et al.  The treewidth and pathwidth of hypercubes , 2006, Discret. Math..

[49]  Robert Ganian,et al.  Expanding the Expressive Power of Monadic Second-Order Logic on Restricted Graph Classes , 2013, IWOCA.

[50]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[51]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[52]  Georg Gottlob,et al.  Width Parameters Beyond Tree-width and their Applications , 2008, Comput. J..

[53]  Ulrik Brandes,et al.  Vertex Bisection is Hard, too , 2009, J. Graph Algorithms Appl..

[54]  Irfan A. Essa,et al.  Graphcut textures: image and video synthesis using graph cuts , 2003, ACM Trans. Graph..