A new class of identities involving Cauchy numbers, harmonic numbers and zeta values
暂无分享,去创建一个
[1] M. Coppo. Nouvelles expressions des formules de Hasse et de Hermite pour la fonction Zêta d’Hurwitz , 2009 .
[2] Masanobu Kaneko,et al. Multiple zeta values, poly-Bernoulli numbers, and related zeta functions , 1999, Nagoya Mathematical Journal.
[3] M. Coppo,et al. The Arakawa–Kaneko zeta function , 2010 .
[4] Joel L. Schiff,et al. The Laplace Transform , 1999 .
[5] E. A. Ulanskii. Multiple zeta values , 2011 .
[6] David M. Bradley,et al. Multiple Zeta Values , 2005 .
[7] H. Srivastava,et al. Explicit Evaluation of Euler and Related Sums , 2005 .
[8] Xiaojing Chen,et al. Dixon's 3F2(1)-series and identities involving harmonic numbers and the Riemann zeta function , 2010, Discret. Math..
[9] Khristo N. Boyadzhiev,et al. Harmonic number identities via Euler's transform. , 2009 .
[10] Extrait de quelques lettres de M. Ch. Hermite à M. S. Píncherle , 1901 .
[11] Philippe Flajolet,et al. Mellin Transforms and Asymptotics: Finite Differences and Rice's Integrals , 1995, Theor. Comput. Sci..
[12] Renzo Sprugnoli,et al. The Cauchy numbers , 2006, Discret. Math..
[13] Karl Dilcher,et al. Some q-series identities related to divisor functions , 1995, Discret. Math..
[14] H. Gadiyar,et al. Ramanujan summation and the exponential generating function $\sum_{k=0}^{\infty}\frac{z^{k}}{k!}\zeta^{\prime}(-k)$ , 2009, 0901.3452.
[15] E. Zeidler. Quantum Field Theory I: Basics in Mathematics and Physics: A Bridge between Mathematicians and Physicists , 2006 .
[16] J. Schiff. The Laplace Transform: Theory and Applications , 1999 .