A new class of identities involving Cauchy numbers, harmonic numbers and zeta values

Improving an old idea of Hermite, we associate to each natural number k a modified zeta function of order k. The evaluation of the values of these functions Fk at positive integers reveals a wide class of identities linking Cauchy numbers, harmonic numbers and zeta values.

[1]  M. Coppo Nouvelles expressions des formules de Hasse et de Hermite pour la fonction Zêta d’Hurwitz , 2009 .

[2]  Masanobu Kaneko,et al.  Multiple zeta values, poly-Bernoulli numbers, and related zeta functions , 1999, Nagoya Mathematical Journal.

[3]  M. Coppo,et al.  The Arakawa–Kaneko zeta function , 2010 .

[4]  Joel L. Schiff,et al.  The Laplace Transform , 1999 .

[5]  E. A. Ulanskii Multiple zeta values , 2011 .

[6]  David M. Bradley,et al.  Multiple Zeta Values , 2005 .

[7]  H. Srivastava,et al.  Explicit Evaluation of Euler and Related Sums , 2005 .

[8]  Xiaojing Chen,et al.  Dixon's 3F2(1)-series and identities involving harmonic numbers and the Riemann zeta function , 2010, Discret. Math..

[9]  Khristo N. Boyadzhiev,et al.  Harmonic number identities via Euler's transform. , 2009 .

[10]  Extrait de quelques lettres de M. Ch. Hermite à M. S. Píncherle , 1901 .

[11]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Finite Differences and Rice's Integrals , 1995, Theor. Comput. Sci..

[12]  Renzo Sprugnoli,et al.  The Cauchy numbers , 2006, Discret. Math..

[13]  Karl Dilcher,et al.  Some q-series identities related to divisor functions , 1995, Discret. Math..

[14]  H. Gadiyar,et al.  Ramanujan summation and the exponential generating function $\sum_{k=0}^{\infty}\frac{z^{k}}{k!}\zeta^{\prime}(-k)$ , 2009, 0901.3452.

[15]  E. Zeidler Quantum Field Theory I: Basics in Mathematics and Physics: A Bridge between Mathematicians and Physicists , 2006 .

[16]  J. Schiff The Laplace Transform: Theory and Applications , 1999 .