Families of explicit two-step methods for integration of problems with oscillating solutions
暂无分享,去创建一个
[1] Charalampos Tsitouras,et al. Cheap Error Estimation for Runge-Kutta Methods , 1999, SIAM J. Sci. Comput..
[2] Charalampos Tsitouras. Dissipative high phase-lag order methods , 2001, Appl. Math. Comput..
[3] Ben P. Sommeijer,et al. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .
[4] M. M. Chawla,et al. An explicit sixth-order method with phase-lag of order eight for y ″= f ( t , y ) , 1987 .
[5] J. Linnett,et al. Quantum mechanics , 1975, Nature.
[6] M H Chawla,et al. A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .
[7] J. Lambert,et al. Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .
[8] M. M. Chawla,et al. phase-lag for the integration of second order periodic initial-value problems. II: Explicit method , 1986 .
[9] A. Messiah. Quantum Mechanics , 1961 .
[10] T. E. Simos. Explicit two-step methods with minimal phase-lag for the numerical integration of special second-order initial-value problems and their application to the one-dimensional Schro¨dinger equation , 1992 .
[11] Theodore E. Simos,et al. Explicit high order methods for the numerical integration of periodic initial-value problems , 1998, Appl. Math. Comput..
[12] E. Fehlberg,et al. Classical eight- and lower-order Runge-Kutta-Nystroem formulas with stepsize control for special second-order differential equations , 1972 .
[13] Charalampos Tsitouras,et al. Neural networks with multidimensional transfer functions , 2002, IEEE Trans. Neural Networks.
[14] R. Liboff. Introductory quantum mechanics , 1980 .
[15] S. N. Papakostas,et al. High Phase-Lag-Order Runge-Kutta and Nyström Pairs , 1999, SIAM J. Sci. Comput..
[16] T. E. Simos,et al. A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems , 1997 .