Families of explicit two-step methods for integration of problems with oscillating solutions

We study a new sixth algebraic order, explicit Numerov-type family of methods. Using every free parameter of the family, even its nodes, we manage to derive two methods. The first with phase-lag of order 12, while the other method has one stage less. This is a considerable improvement over the 10th order phase-lag order methods found in the literature until now. Numerical experiments confirm the superiority of our new methods over older methods.

[1]  Charalampos Tsitouras,et al.  Cheap Error Estimation for Runge-Kutta Methods , 1999, SIAM J. Sci. Comput..

[2]  Charalampos Tsitouras Dissipative high phase-lag order methods , 2001, Appl. Math. Comput..

[3]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[4]  M. M. Chawla,et al.  An explicit sixth-order method with phase-lag of order eight for y ″= f ( t , y ) , 1987 .

[5]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[6]  M H Chawla,et al.  A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .

[7]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[8]  M. M. Chawla,et al.  phase-lag for the integration of second order periodic initial-value problems. II: Explicit method , 1986 .

[9]  A. Messiah Quantum Mechanics , 1961 .

[10]  T. E. Simos Explicit two-step methods with minimal phase-lag for the numerical integration of special second-order initial-value problems and their application to the one-dimensional Schro¨dinger equation , 1992 .

[11]  Theodore E. Simos,et al.  Explicit high order methods for the numerical integration of periodic initial-value problems , 1998, Appl. Math. Comput..

[12]  E. Fehlberg,et al.  Classical eight- and lower-order Runge-Kutta-Nystroem formulas with stepsize control for special second-order differential equations , 1972 .

[13]  Charalampos Tsitouras,et al.  Neural networks with multidimensional transfer functions , 2002, IEEE Trans. Neural Networks.

[14]  R. Liboff Introductory quantum mechanics , 1980 .

[15]  S. N. Papakostas,et al.  High Phase-Lag-Order Runge-Kutta and Nyström Pairs , 1999, SIAM J. Sci. Comput..

[16]  T. E. Simos,et al.  A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems , 1997 .