Time Step Sensitivity of Nonlinear Atmospheric Models: Numerical Convergence, Truncation Error Growth, and Ensemble Design

Computational models based on discrete dynamical equations are a successful way of approaching the problem of predicting or forecasting the future evolution of dynamical systems. For linear and mildly nonlinear models, the solutions of the numerical algorithms on which they are based converge to the analytic solutions of the underlying differential equations for small time steps and grid sizes. In this paper, the authors investigate the time step sensitivity of three nonlinear atmospheric models of different levels of complexity: the Lorenz equations, a quasigeostrophic (QG) model, and a global weather prediction system (NOGAPS). It is illustrated here how, for chaotic systems, numerical convergence cannot be guaranteed forever. The time of decoupling of solutions for different time steps follows a logarithmic rule (as a function of time step) similar for the three models. In regimes that are not fully chaotic, the Lorenz equations are used to illustrate how different time steps may lead to different model climates and even different regimes. A simple model of truncation error growth in chaotic systems is proposed. This model decomposes the error onto its stable and unstable components and reproduces well the short- and medium-term behavior of the QG model truncation error growth, with an initial period of slow growth (a plateau) before the exponential growth phase. Experiments with NOGAPS suggest that truncation error can be a substantial component of total forecast error of the model. Ensemble simulations with NOGAPS show that using different time steps may be a simple and natural way of introducing an important component of model error in ensemble design.

[1]  J. Sprott,et al.  Chaos and Predictability , 2005 .

[2]  Peter C. Chu,et al.  Two Kinds of Predictability in the Lorenz System , 1999 .

[3]  Peter J. Webster,et al.  Random error growth in NMC's global forecasts , 1994 .

[4]  T. N. Palmer,et al.  Predictability of the Atmosphere and Oceans: From Days to Decades , 1996 .

[5]  Joseph Smagorinsky,et al.  Numerical weather analysis and prediction , 1962 .

[6]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[7]  D. Turcotte Fractals and Chaos in Geology and Geophysics , 1992 .

[8]  P. Henrici Discrete Variable Methods in Ordinary Differential Equations , 1962 .

[9]  Franco Molteni,et al.  Toward a dynamical understanding of planetary-scale flow regimes. , 1993 .

[10]  Roger Davies,et al.  A fast radiation parameterization for atmospheric circulation models , 1987 .

[11]  Kerry Emanuel,et al.  Development and Evaluation of a Convection Scheme for Use in Climate Models , 1999 .

[12]  Roger Daley,et al.  NAVDAS: Formulation and Diagnostics , 2001 .

[13]  Grebogi,et al.  Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. , 1994, Physical review letters.

[14]  Roberto Buizza,et al.  The Singular-Vector Structure of the Atmospheric Global Circulation , 1995 .

[15]  Timothy F. Hogan,et al.  Boundary layer clouds in a Global Atmospheric model: Simple cloud cover parameterizations , 2002 .

[16]  C. Nicolis,et al.  Dynamics of Model Error: Some Generic Features , 2003 .

[17]  T. Palmer Extended-range atmospheric prediction and the Lorenz model , 1993 .

[18]  C. Pugh ON A THEOREM OF P. HARTMAN. , 1969 .

[19]  Eugenia Kalnay,et al.  Ensemble Forecasting at NMC: The Generation of Perturbations , 1993 .

[20]  Celso Grebogi,et al.  How long do numerical chaotic solutions remain valid , 1997 .

[21]  Edward N. Lorenz,et al.  Computational chaos-a prelude to computational instability , 1989 .

[22]  Roberto Buizza,et al.  Impact of Ensemble Size on Ensemble Prediction , 1998 .

[23]  Celso Grebogi,et al.  Do numerical orbits of chaotic dynamical processes represent true orbits? , 1987, J. Complex..

[24]  C E Leith,et al.  Objective Methods for Weather Prediction , 1978 .

[25]  T. Palmer,et al.  Stochastic representation of model uncertainties in the ECMWF ensemble prediction system , 2007 .

[26]  Leonard A. Smith,et al.  Nonlinear Processes in Geophysics Model Error in Weather Forecasting , 2022 .

[27]  Franco Molteni,et al.  Predictability and finite‐time instability of the northern winter circulation , 1993 .

[28]  Grebogi,et al.  Shadowing of physical trajectories in chaotic dynamics: Containment and refinement. , 1990, Physical review letters.

[29]  Anna Trevisan,et al.  Transient error growth and local predictability: a study in the Lorenz system , 1995 .

[30]  Tim R. Colvin,et al.  A unified lunar control network: The near side , 1987 .

[31]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .

[32]  R. Daley Atmospheric Data Analysis , 1991 .

[33]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[34]  T. Hogan,et al.  The Description of the Navy Operational Global Atmospheric Prediction System's Spectral Forecast Model , 1991 .

[35]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[36]  M. Shub Global Stability of Dynamical Systems , 1986 .

[37]  E. Lorenz Atmospheric predictability experiments with a large numerical model , 1982 .

[38]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[39]  Ecmwf Newsletter,et al.  EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS , 2004 .

[40]  W. R. Howard The Nature of Mathematical Modeling , 2006 .

[41]  A. Monin,et al.  Weather forecasting as a problem in physics , 1972 .

[42]  R. Bowen ω-Limit sets for Axiom A diffeomorphisms , 1975 .

[43]  Joao Teixeira Stable Schemes for Partial Differential Equations , 1999 .

[44]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[45]  M. Cullen,et al.  Numerical Prediction and Dynamic Meteorology, 2nd Edn. By G. J. HALTINER and R. T. WILLIAMS. Wiley, 1980. 477 pp. £26.90. , 1984, Journal of Fluid Mechanics.

[46]  Franco Molteni,et al.  Ensemble prediction using dynamically conditioned perturbations , 1993 .

[47]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 1994 .

[48]  Ronald M. Errico,et al.  Convergence of Singular Vectors toward Lyapunov Vectors , 1999 .

[49]  Istvan Szunyogh,et al.  A comparison of Lyapunov and optimal vectors in a low-resolution GCM , 1997 .

[50]  Z. Toth,et al.  Short-Term Dynamics of Model Errors , 2002 .

[51]  Tim N. Palmer,et al.  Decaying Singular Vectors and Their Impact on Analysis and Forecast Correction , 1998 .

[52]  C. Nicolis,et al.  Lyapunov Vectors and Error Growth Patterns in a T21L3 Quasigeostrophic Model , 1997 .

[53]  A. Hollingsworth,et al.  Some aspects of the improvement in skill of numerical weather prediction , 2002 .

[54]  Claude Girard,et al.  Stable Schemes for Nonlinear Vertical Diffusion in Atmospheric Circulation Models , 1990 .

[55]  D. V. Anosov,et al.  Geodesic flows on closed Riemann manifolds with negative curvature , 1969 .

[56]  A. Dalcher,et al.  Error growth and predictability in operational ECMWF forecasts , 1987 .

[57]  Guriĭ Ivanovich Marchuk,et al.  Numerical Methods in Weather Prediction , 1974 .

[58]  B. Mathew,et al.  SOME ASPECTS OF THE , 2000 .

[59]  R. Hodur The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) , 1997 .

[60]  C. Leith Theoretical Skill of Monte Carlo Forecasts , 1974 .

[61]  C. Nicolis Dynamics of model error: The role of unresolved scales revisited , 2004 .

[62]  P. D. Thompson,et al.  Uncertainty of Initial State as a Factor in the Predictability of Large Scale Atmospheric Flow Patterns , 1957 .