On Application of Plasmas in Nanotechnologies

In this chapter we give a review of the application of non-equilibrium plasmas in the field of nanotechnologies, and nanotechnology-related science. The field of applications of plasma in general in nanotechnologies is extensive, and the field of non-equilibrium plasmas in the same context is almost as large with many possibilities covering both top-down and bottom-up fabrication approaches. Thus a single review cannot give it justice. We opted here, as may be expected, to give a review of possibilities in general, ranging from the growth and functionalization of aligned nanotubes, carbon walls and sheaths of graphene, through to the growth of gas-phase nanocrystals and dust particles; surface deposition of different structures, functionalization of the surface and conditions for developing means to prepare hyperhydrophobic surfaces; treatment of textiles, organic materials, living cells, to applications in nanoelectronics for the manufacture of future generations of integrated circuits to meet the Moore’s law driven semiconductor roadmap. In a text like this it is not possible to cover all issues and even less to cover all sources. We thus focus on several topics and mostly on the plasma physics problems related to improving the plasma technologies. They include charging as a source of errors in integrated circuit fabrication to the generation of non-equilibrium plasmas at atmospheric pressure for even more convenient application and for applications in biomedicine. The message we hope to convey to all readers is an understanding as to the explicit advantages that non-equilibrium plasmas have in a large number of plasma-assisted nanotechnologies and other modern technologies—an advantage that other emerging technologies will struggle to match at the levels of integration, cost and quality required of future fabrication.

[1]  M. Tadokoro,et al.  Time resolved optical emission spectroscopy of an inductively coupled plasma in argon and oxygen , 1998 .

[2]  B. Saoudi,et al.  Modelling the Low‐Pressure N2 ? O2 Plasma Afterglow to Determine the Kinetic Mechanisms Controlling the UV Emission Intensity and Its Spatial Distribution for Achieving an Efficient Sterilization Process , 2008 .

[4]  T. Makabe,et al.  Optical Emission Spectroscopy of Pulsed Inductively Coupled Plasma in Ar , 2001 .

[5]  Sungho Jin,et al.  Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition , 2000 .

[6]  B. Tomcik,et al.  Kinetics of the diamond-like film deposition on glass fibers , 1995 .

[7]  Rino Morent,et al.  Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure , 2006 .

[8]  Miran Mozetic,et al.  Nanowire sensor response to reactive gas environment , 2008 .

[9]  M. Kushner Distribution of ion energies incident on electrodes in capacitively coupled rf discharges , 1985 .

[10]  Kostya Ostrikov,et al.  Plasma-aided nanofabrication: where is the cutting edge? , 2007 .

[11]  H. F. Winters,et al.  Ion- and electron-assisted gas-surface chemistry—An important effect in plasma etching , 1979 .

[12]  Y. Qiu,et al.  Effect of Atmospheric Plasma Treatment on Desizing of PVA on Cotton , 2003 .

[13]  A. Carr,et al.  Room temperature sterilization of surfaces and fabrics with a One Atmosphere Uniform Glow Discharge Plasma , 1998, Journal of Industrial Microbiology and Biotechnology.

[14]  E. McAdams,et al.  Plasma Chloriding of Thin-Film Silver A Novel Process in Silver-Silver Chloride Reference Electrode Fabrication , 2002 .

[15]  P. Maguire,et al.  Breakdown, scaling and volt–ampere characteristics of low current micro-discharges , 2008 .

[16]  Gregory Fridman,et al.  Applied Plasma Medicine , 2008 .

[17]  R. Dhariwal,et al.  Electric field breakdown at micrometre separations , 1999 .

[18]  P. Maguire,et al.  Dual Role of Purification and Functionalisation of Single Walled CNT by Electron Cyclotron Resonance (ECR) Nitrogen Plasma , 2009 .

[19]  Anne Perwuelz,et al.  Atmospheric air plasma treatment of polyester textile materials. Textile structure influence on surface oxidation and silicon resin adhesion , 2009 .

[20]  P. Maguire,et al.  Advances on the use of carbon based materials at the biological and surface interface for applications in medical implants , 2008 .

[21]  P. Erra,et al.  Surface characterization of keratin fibres treated by water vapour plasma , 2003 .

[22]  J. Ketterson,et al.  Carbon nanotubes synthesized in a hydrogen arc discharge , 1995 .

[23]  Petar Jovančić,et al.  Environmental impact of plasma application to textiles , 2007 .

[24]  Z. Petrović,et al.  Measurements of voltage–current characteristics of a plasma needle and its effect on plant cells , 2006 .

[25]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[26]  M. Kushner,et al.  Conceptual design of advanced inductively coupled plasma etching tools using computer modeling , 1996 .

[27]  Mahmood Ghoranneviss,et al.  Decolorization of Denim Fabrics with Cold Plasmas in the Presence of Magnetic Fields , 2006 .

[28]  T. Makabe,et al.  Diffusion tensor in electron transport in gases in a radio-frequency field , 1997 .

[29]  Hartwig Höcker,et al.  Plasma treatment of textile fibers , 2002 .

[30]  J. Xin,et al.  Functionalizing Polyester Fiber with a Self-Cleaning Property Using Anatase TiO2 and Low-Temperature Plasma Treatment , 2007 .

[31]  H. Thomas 9 – Plasma modification of wool , 2007 .

[32]  T. Herbert,et al.  4 – Atmospheric-pressure cold plasma processing technology , 2007 .

[33]  Jae Koo Lee,et al.  Sparse field level set method for non-convex Hamiltonians in 3D plasma etching profile simulations , 2006, Comput. Phys. Commun..

[34]  F. Tochikubo,et al.  Structure of Low-Frequency Helium Glow Discharge at Atmospheric Pressure between Parallel Plate Dielectric Electrodes , 1999 .

[35]  Robert Robson,et al.  Colloquium : Physically based fluid modeling of collisionally dominated low-temperature plasmas , 2005 .

[36]  R. Nemanich,et al.  Role of thin Fe catalyst in the synthesis of double- and single-wall carbon nanotubes via microwave chemical vapor deposition , 2004 .

[37]  T. Kitajima Functional separation of biasing and sustaining voltages in two-frequency capacitively coupled plasma , 2000 .

[38]  P. Papakonstantinou,et al.  Substitutional nitrogen incorporation through rf glow discharge treatment and subsequent oxygen uptake on vertically aligned carbon nanotubes , 2007 .

[39]  Yiping Qiu,et al.  Dyeing Properties of Wool Fabrics Treated with Atmospheric Pressure Plasmas , 2008 .

[40]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[41]  T. Makabe,et al.  The Radical Transport in the Narrow-Gap-Reactive-Ion Etcher in SF6 by the Relaxation Continuum Model. , 1994 .

[42]  J. Kiwi,et al.  Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature , 2005 .

[43]  Jonathan Tennyson,et al.  Electron collisions with the CF3 radical using the R-matrix method , 2003 .

[44]  E. Özdoǧan,et al.  Improvements of surface functionality of cotton fibers by atmospheric plasma treatment , 2008 .

[45]  C. Pulgarin,et al.  Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver , 2003 .

[46]  Eijkel,et al.  A dc microplasma on a chip employed as an optical emission detector for gas chromatography , 2000, Analytical chemistry.

[47]  F. Hamaoka,et al.  Modeling of Si Etching Under Effects of Plasma Molding in Two-Frequency Capacitively Coupled Plasma in $\hbox{SF}_{6}/\hbox{O}_{2}$ for MEMS Fabrication , 2007, IEEE Transactions on Plasma Science.

[48]  J. Roth,et al.  A remote exposure reactor (RER) for plasma processing and sterilization by plasma active species at one atmosphere , 2000 .

[49]  Z. Petrović,et al.  Electron transport coefficients in mixtures of CF 4 and CF 2 radicals , 2009 .

[50]  Fabrication of hp 32nm resist patterns using near-field lithography , 2007 .

[51]  Measurements and modelling of axial emission profiles in abnormal glow discharges in argon: heavy-particle processes , 2003 .

[52]  M. Jiménez,et al.  The plasma modelling toolkit Plasimo , 2009 .

[53]  K. Ostrikov,et al.  Tailoring carbon nanotips in the plasma-assisted chemical vapor deposition: Effect of the process parameters , 2009 .

[54]  Eshel Ben-Jacob,et al.  DNA TRANSISTOR AND QUANTUM BIT ELEMENT : REALIZATION OF NANO-BIOMOLECULAR LOGICAL DEVICES , 1999 .

[55]  C. Yuen,et al.  Influence of low-temperature plasma on the ink-jet-printed cotton fabric , 2007 .

[56]  Uwe R. Kortshagen,et al.  Silicon nanocrystals with ensemble quantum yields exceeding 60 , 2006 .

[57]  Paul Kiekens,et al.  Non-thermal plasma treatment of textiles , 2008 .

[58]  P. Tessier,et al.  Plasma etching : principles, mechanisms, application to micro- and nano-technologies , 2000 .

[59]  I. Stefanović,et al.  Secondary electron emission of carbonaceous dust particles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  A. Phelps,et al.  Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons , 1999 .

[61]  Petar Jovančić,et al.  Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles , 2009 .

[62]  H. Sawin,et al.  Review of profile and roughening simulation in microelectronics plasma etching , 2009 .

[63]  Meyya Meyyappan,et al.  A review of plasma enhanced chemical vapour deposition of carbon nanotubes , 2009 .

[64]  James Alastair McLaughlin,et al.  Sp3 content in ta-C films vs pulse bias width to the substrate: A correlative structural analysis , 2009 .

[65]  P. Maguire,et al.  Experimental study of breakdown voltage and effective secondary electron emission coefficient for a micro-plasma device , 2004 .

[66]  T. Makabe,et al.  The effect of topographical local charging on the etching of deep-submicron structures in SiO2 as a function of aspect ratio , 2001 .

[67]  Jeffrey Hopwood,et al.  Microfabricated inductively coupled plasma-on-a-chip for molecular SO2 detection: a comparison between global model and optical emission spectrometry , 2003 .

[68]  R. Shishoo,et al.  Plasma technologies for textiles , 2007 .

[69]  M. Keidar,et al.  Modes of nanotube growth in plasmas and reasons for single-walled structure , 2008 .

[70]  Konstantinos P. Giapis,et al.  Maskless etching of silicon using patterned microdischarges , 2001 .

[71]  I. Stefanović,et al.  Infrared fingerprints and periodic formation of nanoparticles in Ar/C2H2 plasmas , 2003 .

[72]  Yukio Watanabe,et al.  Formation and behaviour of nano/micro-particles in low pressure plasmas , 2006 .

[73]  C. Riccardi,et al.  11 – Plasma treatments of fibres and textiles , 2007 .

[74]  P. Rack,et al.  Synthesis of vertically aligned carbon nanofibres for interfacing with live systems , 2009 .

[75]  P. A. McKeown,et al.  Nanotechnology: International Developments and Emerging Products , 2000 .

[76]  Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes. , 2009, Journal of nanoscience and nanotechnology.

[77]  Toshiki Ito,et al.  Fabrication of half-pitch 32nm resist patterns using near-field lithography with a-Si mask , 2006 .

[78]  Particle-in-cell simulation of gas breakdown in microgaps , 2004, physics/0409131.

[79]  K. Schoenbach,et al.  Predicted properties of microhollow cathode discharges in xenon , 2005 .

[80]  D. Gruen,et al.  Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition , 1998 .

[81]  Lars Montelius,et al.  Fabrication of quantum devices by Ångström-level manipulation of nanoparticles with an atomic force microscope , 1998 .

[82]  V. Kolobov,et al.  Simulation of electron kinetics in gas discharges , 2006, IEEE Transactions on Plasma Science.

[83]  B. Radjenovic,et al.  3D Etching profile evolution simulations: Time dependence analysis of the profile charging during SiO2 etching in plasma , 2007 .

[84]  N. Seeman The design and engineering of nucleic acid nanoscale assemblies. , 1996, Current opinion in structural biology.

[85]  B. Radjenovic,et al.  The influence of ion-enhanced field emission on the high-frequency breakdown in microgaps , 2007 .

[86]  Daniel E. Prober,et al.  Chapter 4 - Nanometer-Scale Fabrication Techniques , 1982 .

[87]  Eva Stoffels,et al.  Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials , 2002 .

[88]  Robert J. Hoekstra,et al.  Two‐dimensional modeling of high plasma density inductively coupled sources for materials processing , 1994 .

[89]  B. Radjenovic,et al.  Application of level set method in simulation of surface roughness in nanotechnologies , 2009 .

[90]  B. Tsui,et al.  Plasma charging damage during contact hole etch in high-density plasma etcher , 2000 .

[91]  S. Mitra,et al.  Experimental and numerical investigation of capillary flow in SU8 and PDMS microchannels with integrated pillars , 2009 .

[92]  T. Makabe,et al.  Optical emission diagnostics of etching of low-k dielectrics in a two frequency inductively coupled plasma , 2007 .

[93]  D. J. Economou,et al.  Anisotropic etching of polymer films by high energy (∼100s of eV) oxygen atom neutral beams , 2001 .

[94]  George K Stylios,et al.  Effect of Low Temperature Plasma Treatment on the Scouring and Dyeing of Natural Fabrics , 2004 .

[95]  M. Turner,et al.  Collisionless heating in capacitive discharges enhanced by dual-frequency excitation. , 2006, Physical review letters.

[96]  E. Voges,et al.  A new low-power microwave plasma source using microstrip technology for atomic emission spectrometry , 2000 .

[97]  S. Samukawa,et al.  Generating high-efficiency neutral beams by using negative ions in an inductively coupled plasma source , 2002 .

[98]  Shailesh Kumar,et al.  Arrays of carbon nanoflake spherules realised on copper substrate , 2009 .

[99]  R. E. Jensen,et al.  Surface modification of polyamide fibers and films using atmospheric plasmas , 2006 .

[100]  M. Ueda,et al.  Physico–chemical modifications of fibres and their effect on coloration and finishing , 2008 .

[101]  S. Vrhovac,et al.  Energy distributions of electrons in a low-current self-sustained nitrogen discharge , 2001 .

[102]  Alex V Vasenkov,et al.  Electron energy distributions and anomalous skin depth effects in high-plasma-density inductively coupled discharges. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  D. Jocic,et al.  The Influence of Low-temperature Plasma and Enzymatic Treatment on Hemp Fabric Dyeability , 2007 .

[104]  Eva Stoffels,et al.  Superficial treatment of mammalian cells using plasma needle , 2003 .

[105]  C. Sloby,et al.  Discovering the fullerenes , 1997 .

[106]  M. Morshed,et al.  Study of the wettability properties of polypropylene nonwoven mats by low‐pressure oxygen plasma treatment , 2007 .

[107]  P. Maguire,et al.  Comparing hardness and wear data for tetrahedral amorphous carbon and hydrogenated amorphous carbon thin films , 2004 .

[108]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[109]  D. Flanders Nanometer structure and device fabrication , 1984 .

[110]  Z. Petrović,et al.  The role of heavy particles in kinetics of low current discharges in argon at high electric field to gas number density ratio , 1998 .

[111]  C. Kan,et al.  Dyeing Behaviour of Low Temperature Plasma Treated Wool , 2006 .

[112]  K. L. Mittal,et al.  Polymer surface modification : relevance to adhesion , 1996 .

[113]  Jong-Kyu Park,et al.  Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ) , 1998 .

[114]  A. Ricard,et al.  Determination, through titration with NO, of the concentration of oxygen atoms in the flowing afterglow of Ar-O2 and N2-O2 plasmas used for sterilization purposes , 2001 .

[115]  T. Makabe,et al.  Development of optical computerized tomography in capacitively coupled plasmas and inductively coupled plasmas for plasma etching , 2002 .

[116]  P. Papakonstantinou,et al.  Oxidative functionalization of carbon nanotubes in atmospheric pressure filamentary dielectric barrier discharge (APDBD) , 2005 .

[117]  B. Radjenovic,et al.  Modelling of a low-pressure argon breakdown in combined fields , 2006 .

[118]  T. Makabe,et al.  Negative charge injection to a positively charged SiO2 hole exposed to plasma etching in a pulsed two-frequency capacitively coupled plasma in CF4/Ar , 2003 .

[119]  Ricardo Molina,et al.  Role of the Active Species of Plasmas Involved in the Modification of Textile Materials , 2007 .

[120]  J. Yip,et al.  Low temperature plasma-treated nylon fabrics , 2002 .

[121]  Hiroshi Iwai,et al.  Roadmap for 22nm and beyond (Invited Paper) , 2009 .

[122]  Konstantinos P. Giapis,et al.  Hyperthermal neutral beam etching , 1995 .

[123]  T. Makabe,et al.  Functional separation in two frequency operation of an inductively coupled plasma , 2004 .

[124]  K. Johansson Plasma modification of natural cellulosic fibres : Chapter 10 , 2007 .

[125]  Yukihiro Sato,et al.  Dyeing properties of oxygen low-temperature plasma-treated wool and nylon 6 fibres with acid and basic dyes , 2008 .

[126]  Toshiaki Makabe,et al.  Vertically integrated computer-aided design for device processing , 2002 .

[127]  Petar Jovančić,et al.  Plasma-induced Decolorization of Indigo-dyed Denim Fabrics Related to Mechanical Properties and Fiber Surface Morphology , 2009 .

[128]  Kunihide Tachibana,et al.  Observation of self-organized filaments in a dielectric barrier discharge of Ar gas , 2003 .

[129]  Suk-Chul Choi,et al.  Effect of Low Temperature Plasma Treatment on Color of Wool and Nylon 6 Fabrics Dyed with Natural Dyes , 1998 .

[130]  K. Jensen,et al.  A Continuum Model of DC and RF Discharges , 1986, IEEE Transactions on Plasma Science.

[131]  K. Terashima,et al.  Application of microscale plasma to material processing , 2001 .

[132]  M. Radetić,et al.  Recycled‐wool‐based nonwoven material as a sorbent for lead cations , 2003 .

[133]  Masaru Hori,et al.  Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection , 2004 .

[134]  J. Jovanovi,et al.  Measurement and interpretation of swarm parameters and their application in plasma modelling , 2009 .

[135]  Davide Mariotti,et al.  Self-organized nanostructures on atmospheric microplasma exposed surfaces , 2007 .

[136]  T. Takagishi,et al.  Effect of Corona Discharge on the Surface of Wool and Its Application to Printing , 1991 .

[137]  T. Makabe,et al.  Effect of aspect ratio on topographic dependent charging in oxide etching , 2001 .

[138]  K. Becker,et al.  Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions , 2001 .

[139]  Ya-Li Li,et al.  Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis , 2004, Science.

[140]  S. Roy,et al.  Temperature dependent evolution of the local electronic structure of atmospheric plasma treated carbon nanotubes: Near edge x-ray absorption fine structure study , 2006 .

[141]  M. Tadokoro,et al.  Three Dimensional Optical Emission Tomography of an Inductively Coupled Plasma , 1997 .

[142]  Jeffrey Hopwood,et al.  Review of inductively coupled plasmas for plasma processing , 1992 .

[143]  K. Ness,et al.  Development of swarm transport theory in radio-frequency electric and crossed electric and magnetic fields , 2002 .

[144]  M. Mozetič,et al.  Reactive oxygen plasma-enabled synthesis of nanostructured CdO: tailoring nanostructures through plasma–surface interactions , 2008, Nanotechnology.

[145]  S. Campbell,et al.  Doping efficiency, dopant location, and oxidation of Si nanocrystals , 2008 .

[146]  H. W. Kroto,et al.  The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70 , 1987, Nature.

[147]  M. Mozetič,et al.  Carbon nanofiber growth in plasma-enhanced chemical vapor deposition , 2008 .

[148]  Horng-Chih Lin,et al.  Evaluation of plasma charging damage in ultrathin gate oxides , 1998 .

[149]  U. Kortshagen Nonthermal plasma synthesis of semiconductor nanocrystals , 2009 .

[150]  K. Schoenbach,et al.  Direct current glow discharges in atmospheric air , 1999 .

[151]  B. Radjenovic,et al.  Theoretical study of the electron field emission phenomena in the generation of a micrometer scale discharge , 2008 .

[152]  Nakano,et al.  Simulations of rf glow discharges in SF6 by the relaxation continuum model: Physical structure and function of the narrow-gap reactive-ion etcher. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[153]  Christophe Leys,et al.  Surface Modification of Non-woven Textiles using a Dielectric Barrier Discharge Operating in Air, Helium and Argon at Medium Pressure , 2007 .

[154]  Yang Yang,et al.  Modeling of magnetically enhanced capacitively coupled plasma sources: Two frequency discharges , 2007 .

[155]  J. McVittie,et al.  Modeling of oxide breakdown from gate charging during resist ashing , 1994 .

[156]  Kostya Ostrikov,et al.  Colloquium: Reactive plasmas as a versatile nanofabrication tool , 2005 .

[157]  E. Gogolides,et al.  Roughness Formation During Plasma Etching of Composite Materials: A Kinetic Monte Carlo Approach , 2007, IEEE Transactions on Plasma Science.

[158]  T. Makabe,et al.  Negative mobilities of electrons in radio frequency fields , 2003 .

[159]  M. Meyyappan,et al.  Palladium catalyzed formation of carbon nanofibers by plasma enhanced chemical vapor deposition , 2007 .

[160]  N. Huang,et al.  Third-generation plasma immersion ion implanter for biomedical materials and research , 2001 .

[161]  K. Giapis,et al.  On the origin of the notching effect during etching in uniform high density plasmas , 1997 .

[162]  K. N. Pandiyaraj,et al.  Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics , 2008 .

[163]  James Alastair McLaughlin,et al.  Mechanical stability, corrosion performance and bioresponse of amorphous diamond-like carbon for medical stents and guidewires , 2005 .

[164]  A. G. Mamalis Recent advances in nanotechnology , 2007 .

[165]  Mounir Laroussi,et al.  Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects , 2002 .

[166]  S. Sakadžić,et al.  Diffusion of electrons in time-dependent E(t) × B(t) fields , 2000 .

[167]  Branislav Radjenović,et al.  Nonconvex Hamiltonians in three dimensional level set simulations of the wet etching of silicon , 2006 .

[168]  A. Grill Cold Plasma Materials Fabrication , 1994 .

[169]  Ronald D. White,et al.  Monte Carlo studies of non-conservative electron transport in the steady-state Townsend experiment , 2008 .

[170]  E. Gogolides,et al.  Modeling of roughness evolution during the etching of inhomogeneous films: material-induced anomalous scaling. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[171]  Petar Jovančić,et al.  Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics , 2008 .

[172]  E. Kratschmer,et al.  Nanostructure technology , 1988 .

[173]  B. Radjenovic,et al.  Dynamics of the Profile Charging During $\hbox{SiO}_{2}$ Etching in Plasma for High Aspect Ratio Trenches , 2008, IEEE Transactions on Plasma Science.

[174]  I. Levchenko,et al.  Control of morphology and nucleation density of iron oxide nanostructures by electric conditions on iron surfaces exposed to reactive oxygen plasmas , 2009 .

[175]  Konstantinos P. Giapis,et al.  High-pressure micro-discharges in etching and deposition applications , 2003 .

[176]  D. Marić,et al.  Measurements and analysis of excitation coefficients and secondary electron yields in Townsend dark discharges , 2003 .

[177]  P. Papakonstantinou,et al.  Raman study of multiwalled carbon nanotubes functionalized with oxygen groups , 2006 .

[178]  U. Kortshagen,et al.  FAST TWO-DIMENSIONAL SELF-CONSISTENT KINETIC MODELING OF LOW-PRESSURE INDUCTIVELY COUPLED RF DISCHARGES , 1994 .